\(a+b\le2\sqrt{2}\) , tìm minP = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2022

Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)

Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Từ đó ta có \(P\ge\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)

21 tháng 4 2017

số 9 nha chúc bạn học giỏi nhớ k cho mình nhé

27 tháng 4 2017

Ta có \(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(a+b\le2\sqrt{2}\) \(\Rightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Hay \(P=\frac{1}{a}+\frac{1}{b}\ge\sqrt{2}\)

Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)

Vậy \(P_{min}=\sqrt{2}\) tại \(a=b=\sqrt{2}\)

DD
7 tháng 2 2021

\(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{\left(1+1\right)^2}{\sqrt{a+3}+\sqrt{b+3}}=\frac{4}{\sqrt{a+3}+\sqrt{b+3}}\)

Ta có: 

\(\left(\sqrt{a+3}.1+\sqrt{b+3}.1\right)^2\le\left(1^2+1^2\right)\left(a+3+b+3\right)\le16\)

\(\Rightarrow\sqrt{a+3}+\sqrt{b+3}\le\sqrt{16}=4\)

\(\Rightarrow P\ge\frac{4}{\sqrt{a+3}+\sqrt{b+3}}\ge\frac{4}{4}=1\).

Dấu \(=\)xảy ra khi \(a=b=1\).

7 tháng 2 2021

\(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\Rightarrow P^2=\left(\frac{1}{a+3}+\frac{1}{b+3}\right)+\frac{2}{\sqrt{\left(a+3\right)\left(b+3\right)}}\)\(\ge\frac{4}{\left(a+b\right)+6}+\frac{2}{\frac{\left(a+3\right)+\left(b+3\right)}{2}}=\frac{8}{a+b+6}\ge\frac{8}{2+6}=1\)

\(\Rightarrow P\ge1\)

Đẳng thức xảy ra khi a = b = 1

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

31 tháng 12 2015

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Min P = \(\sqrt{2}\Leftrightarrow a=y=\sqrt{2}\)

31 tháng 12 2015

câu hỏi tương tự nha tuấn anh

30 tháng 6 2020

Ta phải chứng minh

\(\displaystyle \sum\)\(\frac{1+a}{b+c}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\)\(\displaystyle \sum\)\(\frac{2a+b+c}{b+c}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\)\(\displaystyle \sum\)\(\frac{2a}{b+c}+3\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{b+c}+\frac{c}{a}-\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{ac}{b\left(b+c\right)}+\frac{bc}{a\left(a+b\right)}+\frac{ab}{c\left(c+a\right)}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{\left(ac\right)^2}{abc\left(b+c\right)}+\frac{\left(bc\right)^2}{abc\left(a+b\right)}+\frac{\left(ca\right)^2}{abc\left(c+a\right)}\ge\frac{3}{2}\)

Mặt khác: Theo BĐT AM-GM ta có:

\(\left(ab+bc+ca\right)^2\ge3\left(a^2bc+ab^2c+abc^2\right)=3abc\left(a+b+c\right)\)

Theo BĐT Cauchy-Schwwarz ta có:

\(\frac{\left(ac\right)^2}{abc\left(a+b\right)}+\frac{\left(bc\right)^2}{abc\left(a+b\right)}+\frac{\left(ca\right)^2}{abc\left(c+a\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\frac{3}{2}\)

Bài toán được chứng minh xong. Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)