K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)

 

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

9 tháng 5 2018

\(\left(a^2+b^2\right)\left(1^2+1^2\right)>=\left(a+b\right)^2\)(bđt bunhiacopxki) dấu = xảy ra khi a=b

\(\Rightarrow2\left(a^2+b^2\right)>=\left(a+b\right)^2\Rightarrow2\cdot2\left(a^2+b^2\right)=4\left(a^2+b^2\right)>=2\left(a+b\right)^2\)

\(\Rightarrow\frac{a^2+b^2}{2}>=\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)

vậy \(\frac{a^2+b^2}{2}>=\left(\frac{a+b}{2}\right)^2\)dấu = xảy ra khi a=b

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

11 tháng 9 2020

a) a2 + b2 + c2 ≥ ab + bc + ca

Nhân 2 vào từng vế của bất đẳng thức

<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

=> đpcm 

Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

11 tháng 9 2020

b) a2 + b2 + c2 + 3 ≥ 2( a + b + c )

<=> a2 + b2 + c2 + 3 ≥ 2a + 2b + 2c

<=> a2 + b2 + c2 + 3 - 2a - 2b - 2c ≥ 0

<=> ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + ( c2 - 2c + 1 ) ≥ 0

<=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 ≥ 0 ( đúng )

=> đpcm 

Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)

18 tháng 8 2018

\(a^2+b^2+c^2+1>a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)

\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)( luôn đúng )

Vậy ...

18 tháng 8 2018

Ta có: \(a^2+b^2+c^2+1>a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)

\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)

\(\Leftrightarrow\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)+\left(b^2-2.b.\frac{1}{2}+\frac{1}{4}\right)+\left(c^2-2.c.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}>0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)

Ta thấy: (a-1/2)2 lớn hơn hoặc bằng 0 (với mọi a)

             (b-1/2)2 lớn hơn hoặc bằng 0 (với mọi b)

             (c-1/2)2 lớn hơn hoặc bằng 0 (với mọi c)

             1/4 > 0

Nên BĐT luôn đúng

=> ĐPCM

NV
29 tháng 5 2020

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)