K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)

\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)

\(\Leftrightarrow ab-ab-a=-a\)(đúng)

Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)

_Kik nha!! ^ ^

30 tháng 4 2017

Hê! biết làm rồi!

25 tháng 8 2016

Ta có: a

/b+1 + (-a/b)

= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)

= a.b/b.(b+1) + (-a.b - a)/b.(b+1)

= a.b+(-a.b-a)/b.(b+1)

= a.b-a.b-a/b2 + b

= -a/b2 + b ( đpcm)

5 tháng 11 2019

a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)

Từ \(\frac{x}{3}=10=>x=30\)

Từ \(\frac{y}{4}=10=>y=40\)

Từ \(\frac{z}{5}=10=>z=50\)

Vậy x=30,y=40,z=50

b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)

Đpcm

5 tháng 11 2019

a)Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20

-> \(\frac{x}{3}\)= 20 ->x=20*3=60

\(\frac{y}{4}\)=20->y=20*4=80

\(\frac{z}{5}\)=20->z=20*5=100

Vậy x=60, y=80, z=100.

14 tháng 7 2016

Mk làm như thê snayf mà ko bít đúng ko? các bn cho ý kiến nha!
TA có:
a < b => a + a < a + b < b + b
Hay 2.a <a+b<2b

Vậy: a/m < a+b/2m < b/m
 

21 tháng 6 2017

\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)

\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)

Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)

16 tháng 7 2019

2. Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)

\(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(3^n.10-2^{n-1}.10\)

\(\left(3^n-2^{n-1}\right).10⋮10\forall n\)

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)