K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)

 De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)

\(\Rightarrow dpcm\)

11 tháng 4 2018

Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1

Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1

=>a2+b2 chia cho 3 dư 0,1 hoặc 2

Mà a2+b2 chia hết cho 3

=>a2+b2 chia cho 3 dư 0

=>a2 và b2 chia hết cho 3

Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3

Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3

Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3

Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và bphải chia hết cho 3 vậy ?

10 tháng 11 2016

a+5b chia hết 7 thì a và b chia hết cho 7

vậy 10a +b chia hết 7

11 tháng 11 2016

Ta có :

\(a+5b⋮7\)

\(\Leftrightarrow21a-a+5b-7b⋮7\)

\(\Leftrightarrow20a-2b⋮7\)

\(\Leftrightarrow2\left(10a-b\right)⋮7\)

Mà ( 2 ; 7 ) = 1

=> 10a - b chia hết cho 7

** Sai đề nhé bạn

8 tháng 4 2017

Ta xét hiệu:

(10a + 50b) - (10a + b) = 10a + 50b - 10a - b

= 49b \(⋮\) 7

\(\Rightarrow\) (10a + 50b) - (10a + b) (1)

Theo bài ra: a + 5b \(⋮\) 7

\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)

Từ (1) và (2), suy ra:

10a + b \(⋮\) 7

Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7

10 tháng 11 2016

Ta có :

\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)

\(=21a+7b=7\left(3a+b\right)\)

+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )

+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )

Mà : 2 và 7 là hai số nguyên tố cùng nhau .

\(\Rightarrow10a+b⋮7\)

Vậy ...

13 tháng 5 2017

a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8

b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8

c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5

d) Đúng

5 tháng 11 2015

a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1

Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6

Do m và n nguyên tố cùng nhau nên ta được như sau:

- Nếu m=1 thì a=42 và n=5 thì b=210

- Nếu m=5 thì a=210 và n=1 thì b=42

b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}

c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        3(2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        (6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2

Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1

Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)

 

 

12 tháng 11 2017

m n ở đâu

3 tháng 12 2017

Cau 2 la co bao nhieu trang,cau 3 viet sai , phai la 14n va 21n

Cau 1 :De 1*78* chia cho 5 du 3 thi phai co chu so tan có cung la 3 hoac 8

Ma so do phai chia het cho 2 nen co chu so tan cung la 8 . Ta duoc 1*788

De 1*788 chia het cho 9 thi :(1+*+7+8+8) chia het cho 9.........ta co 24+* chia het cho 9

Vay so do =13788

Cau 3:(14n;21n)=(14n;7n)=(7n;7n)=1

Vay 14n va 21n la 2 so nguyen to cung nhau 

Cau4: Minh chua hieu de hoac la de sai chu may so do deu chia get cho 3

3 tháng 12 2017

giúp mình với mình đang cần gấp

3 tháng 11 2023

a) A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100

       =(2 + 2^2) + (2^3 + 2^4) + ... + (2^99 + 2^100)

       =(2 + 2^2) + 2(2 + 2^2) + ... + 2^98(2 + 2^2)

       =(1 + 2 + ... + 2^98) . (2 + 2^2)

       = (1 + 2 + ... + 2^98) . 6 ⋮ 6
Vậy A ⋮ 6 (đpcm)