K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

mình giải câu 3 thôi nhé: câu c ấy , mình không giải thích được

Câu 1: Đến 20 thì cả ba đèn phát sáng cùng lúc

Câu 3: C

Học tốt!!!

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 

 

4 tháng 9 2023

a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)

19 tháng 3 2017

tuyeenr ban trai

lương:tích

điều kiện: phải có ảnh chân dung

mình ché trên mạng

 a. Ta xét a = 1 
=> a + b^2 = b^2 + 1 = (b^2 - 1) + 2 chia hết cho (b - 1) 
=> 2 chia hết cho (b - 1) 
=> b = 2 hoặc b = 3 

(a, b) = (1, 2), (1, 3) thỏa mãn 

b. ta xét a = 2 
=> a + b^2 = b^2 + 2 chia hết cho (4b - 1) 
=> 4b^2 + 8 chia hết cho (4b - 1) 
=> (4b^2 - b) + (b + 8) chia hết cho (4b - 1) 
=> (b + 8) chia hết cho (4b - 1) * 
Ta thấy * thỏa mãn khi b = 1 hoặc b = 3, với b > 3 ta có (4b - 1) > b + 8 
nên b + 8 không chia hết cho (4b - 1) 

Thử lại ta thấy (a, b) = (2, 1), (2, 3) thỏa mãn 

c. Ta xét a > 2 

không thể có b = 1 vì lúc đó ta có 
a^2 - a - 2 = a(a - 1) - 2 > 2*(2 - 1) - 2 = 0 
=> a + 1 < a^2 - 1 
=> a + 1 không thể chia hết cho a^2 - 1 

tiếp theo ta xét b >= 2 

c.1. xét a > b 
a*[a*(b - 1) - 1] >= a*[a*(2 - 1) - 1] = a*(a - 1) > 2*(2 - 1) = 2 > 1 
=> a^2(b - 1) - a > 1 
=> a^2b - 1 > a + a^2 > a + b^2 
=> a + b^2 không thể chia hết cho a^2b - 1 

c.2. xét a = b 
a^3 - 1 = (a - 1)(a ^2 + a + 1) > (a ^2 + a + 1) > a + a^2 
=> a + a^2 không chia hết cho a^3 - 1 

c.3 xét a < b 
"(a + b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + a^2*b^2) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) + b*(a^2*b - 1) chia hết cho (a^2b - 1)" 
<=> "(a^3 + b) chia hết cho (a^2b - 1)" ** 
Ta cm ** sai 

(a + 1)(a^2 - 1) = (a + 1)(a^2 - a + a - 1) > (a + 1)(a^2 - a + 1) (do a - 1 > 1) = a^3 + 1 
=> b >= (a + 1) > (a^3 + 1)/(a^2 - 1) 
=> b(a^2 - 1) > a^3 + 1 
=> a^2b - 1 > a^3 + b 
vậy (a^3 + b) không thể chia hết cho (a^2b - 1) tức ** sai. 

*mina*

11 tháng 1 2016

cách hay mà, sai đâu

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0