Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : b = ab
=> a = ab.b = ab^2
=> b^2 = 1 ( vì a,b khác 0 )
=> b=+-1
+, Nếu b=-1
Có : ab = a+b
=> -a = a+1
=> a=-1/2
=> T = 5/4
+, Nếu b = 1
Có : ab = a+b
=> a = a+1
=> ko tồn tại a t/m
Vậy T = 5/4
Tk mk nha
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)
M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
Đề sai nhé mẫu mũ 2010 => M =1 mới đúng
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)
Bài 20:
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = x
=> x = y = z
mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
b) a + c = 2b
=> d(a + c) = 2bd
=> ad + cd = 2bd (1)
Có: c(b + d) = 2bd
=> cb + cd = 2bd (2)
(1);(2) => ad + cd = cb + cd
=> ad = cb
=> a/b = c/d
=> đpcm
đợi nghĩ nốt c đã
ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à
Ta có: \(\dfrac{a}{b}=ab=a+b\)
Từ \(\dfrac{a}{b}=ab\Leftrightarrow a=\dfrac{a}{b^2}\Leftrightarrow b^2=1\Leftrightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
Với \(b=1\) ta có: \(a=a+1\) (vô lí)
Với \(b=-1\) ta có: \(-a=a-1\Leftrightarrow2a=1\Leftrightarrow a=\dfrac{1}{2}\) (thỏa mãn)
\(T=a^2+b^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)