Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)
\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)
\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)
\(\Rightarrow A\ge2+4+2=8\)
"=" khi \(a=b=1\)
Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng)
\(\Leftrightarrow dpcm\)
⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2
⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0
⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0
⇔[(a+b)2−ab−1]2≥0(đúng)
k mình đi
Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\) (1)
\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)
\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)
\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) (vì a + b = 1)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (2)
Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.
1+1/a= 1+ (a+b)/a = 2+b/a
tương tự: 1+1/b= 2+a/b
nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)
áp dụng bđt cô si a/b+b/a >=2 =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
. Đặt a+1/a=x , b+1/b=y.
. Ta có: A = (a+1/a)^2 + (b+1/b)^2 = x^2 + y^2 >=1/2(x+y)^2 ( Cái này rất dễ chứng minh, bạn dùng định nghĩa để cm nha)(1)
. Ta lại có: x + y = a + b + 1/a + 1/b , vì a + b =1 nên : x + y = 1 + 1/a + 1/b
. Lại có: 1/a + 1/b = a+b/ab, do a,b>0 nên 1/ab nhỏ nhất khi ab lớn nhất <=> a = b = 1/2 ( Vì a+ b =1)
. Suy ra 1/ab >= 4 => a+b/ab >= 4 (a+b =1) => x + y >= 5 (2)
. Từ (1) và (2) suy ra A>= 25/5
. Dấu "=" xảy ra khi a = b =1/2
. Kết luận
. Chỗ nào khó hiểu bạn hỏi lại mình nha =))
.
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
xin lỗi mik viết nhầm chỉ có 1 số 8 thôi