\(\le\) \(\dfrac{4}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

AH
Akai Haruma
Giáo viên
27 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\ge (1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\)

\(\Rightarrow \frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}\)

Hoàn toàn tương tự: \(\frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}; \frac{b}{a}+\frac{b}{c}\geq \frac{4b}{a+c}\)

Cộng theo vế các BĐT thu được:

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

3 tháng 5 2017

Ta có \(a\ge1;b\ge1\Rightarrow a\cdot b\ge1\) (1)

\(\Rightarrow\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)>0\) (2)

Từ (1);(2)\(\Rightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{b-a}{1+ab}\left(\dfrac{b^2\cdot a-a^2b-b+a}{\left(1+a^2\right)\left(1+b^2\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{b-a}{1+ab}\left(\dfrac{a}{1+a^2}-\dfrac{b}{1+b^2}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+ab\right)\left(1+a^2\right)}-\dfrac{b^2-ab}{\left(1+ab\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2+1-1}{\left(1+ab\right)\left(1+a^2\right)}-\dfrac{b^2-1-ab+1}{\left(1+ab\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}+\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\ge0\)

\(\Rightarrow\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\) (đpcm)


3 tháng 5 2017

Ôn tập: Bất phương trình bậc nhất một ẩn

P/S: x thay = a , y thay = b nha

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

23 tháng 3 2017

a) Xét hiệu : VT - VP

= \(\dfrac{\left(a+b\right)^2}{4}\) _ ab = \(\dfrac{a^2+2ab+b^2}{4}\)- \(\dfrac{4ab}{4}\)

= \(\dfrac{a^2-2ab+b^2}{4}\) = \(\dfrac{\left(a-b\right)^2}{4}\)

Có : (a - b )2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .

(bất phương trình đúng ) .

=> VT - VP \(\ge\) 0 => ( \(\dfrac{a+b}{2}\))2 \(\ge\) ab .

b) Xét hiệu ; VP - VT

= \(\dfrac{a^2+b^2}{2}\)-(\(\dfrac{a+b}{2}\))2

= \(\dfrac{2a^2+2b^2-\left(a^2+2ab+b^2\right)}{4}\)

= \(\dfrac{\left(a-b\right)^2}{4}\) .

Có : (a-b)2 \(\ge\) 0 => \(\dfrac{\left(a-b\right)^2}{4}\) \(\ge\) 0 .

VP - VT \(\ge\) 0 .

Vậy ( \(\dfrac{a+b}{2}\) )2 \(\le\) \(\dfrac{a^2+b^2}{2}\) .

24 tháng 3 2017

Hỏi hết bài khó luôn đi. Làm chovui

20 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=9^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Rightarrow a^2+b^2+c^2\ge3\)

Lại có: \(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)

\(\Rightarrow3\ge ab+bc+ac\Rightarrow ab+bc+ac\le3\)

Bất đẳng thức ban đầu tương đương với:

\(\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(b^2+1\right)+b\left(c^2+1\right)+c\left(a^2+1\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}a\left(b^2+1\right)\ge a\cdot2\sqrt{b^2}=2ba\\b\left(c^2+1\right)\ge b\cdot2\sqrt{c^2}=2cb\\c\left(a^2+1\right)\ge c\cdot2\sqrt{a^2}=2ac\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(ab+bc+ca\le3\)\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{2\cdot3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

21 tháng 3 2017

\(VT=\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\)

\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)

\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) (1)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\)(2)

Từ (1) và (2)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )

Dấu "=" xảy ra khi \(a=b=c=1\)