\(\in_{ }\)R . Biết \(a^3+b^3=2\)

CMR

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

vì avà b2 là 2 SCP nên chúng là STN

thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1

=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)

29 tháng 8 2016

Áp dụng bất đẳng thức Cauchy ta có :

 \(a^2+b^2\ge2\left|ab\right|\)

\(\Rightarrow\left|ab\right|\le1\)

\(\Leftrightarrow-1\le\left|ab\right|\le1\)

Ta có : \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(\Rightarrow\left(a+b\right)^2\le2+2ab\le4\)

\(\Rightarrow a+b\le2\)

23 tháng 1 2018

dự đoán của chúa Pain a=b=c=1

ta có   \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)

\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)

\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)

ta có  \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng 

thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)

\(ab^2+bc^2+ca^2-abc\le3-abc\)

có  \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)

ta có \(a^2+1\ge2a\left(cosi\right)\)

        \(b^2+1\ge2b\)

       \(c^2+1\ge2c\)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

có (a^2+b^2+c^2)=3 (gt)   \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)

cùng dấu < thay vào ta được

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)

\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)

cho chúa Pain xin cái tính :)

6 tháng 5 2018

từ giả thuyết suy ra : abc >0

có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0

\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)

Cộng a2+b2+cvào (1)

2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2

(a+b+c)2-4\(\ge\)a2+b2+c2

thay a+b+c=3 vào

9-4\(\ge\)a2+b2+c2

\(\ge\)a2+b2+c2

a2+b2+c\(\le\)5

6 tháng 5 2018

cauhc lop may

19 tháng 3 2018

8 hay 6???

19 tháng 3 2018

6