\(\in\) N. Chứng tỏ rằng nếu 5a+3b và 13a+8b cùng \(⋮\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có: \(5a+3b⋮2018\Rightarrow65a+39b⋮2018\)

\(13a+8b⋮2018\Rightarrow65a+40b⋮2018\)

Từ 2 điều trên suy ra b chia hết cho 2018

=> 3b chia hết cho 2018 => 5a chia hết cho 2018

Mà ƯCLN(5,2018)=1

=> a chia hết cho 2018

15 tháng 9 2016

Vì \(\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\) => \(\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\)=> \(\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}\)

=> \(\left(40a+24b\right)-\left(39a+24b\right)⋮1995\)

=> \(40a+24b-39a-24b⋮1995\)

=> \(b⋮1995\left(1\right)\) 

=> \(8b⋮1995\)

Mặt khác \(13a+8b⋮1995\)

=> \(13a⋮1995\)

Mà (13;1995)=1 => \(a⋮1995\left(2\right)\)

Từ (1) và (2) => \(a,b⋮1995\left(đpcm\right)\)

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu