K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

a: a>b

=>3a>3b

=>3a+5>3b+5

b: a>b

=>2a>2b

=>2a-3>2b-3>2b-4

28 tháng 3 2023

a)

`a>b`

`<=>2a>2b`

`<=>2a+4>2b+4`

b)

`a>b`

`<=>-2a<-2b`

`<=>7-2a<7-2b`

c)

`a>b`

`<=>5a>5b`

`<=>5a+3>5b+3`

mà `5b-3<5b+3`

`=>5a+3>5b-3`

d)

`a>b`

`<=>2a>2b`

`<=>2a+5>2b+5`

mà `2b+5>2b-1`

`=>2a+b>2b-1`

26 tháng 4 2020

bài 2 còn thiếu vs còn bài 3 đaua bn

Bài 1:

1) Ta có: a<b

⇔a+5<b+5

2) Ta có: a<b

⇔a-7<b-7

3) Ta có: a<b

⇔6a<6b

4) Ta có: a<b

⇔3a<3b

hay 3a+1<3b+1

5) Ta có: a<b

⇔2a<2b

⇔-2a>-2b

hay -2a-5>-2b-5

Bài 2:

1) Ta có: a+5<b+5

⇔a<b

2) Ta có: -3a>-3b

⇔a>b

15 tháng 5 2021

`a)a<b<=>a+2<b+2`

`b)a<b<=>3a<3b<=>3a-2<3b-2<3b+2`

16 tháng 5 2021

câu b sai

 

8 tháng 9 2016

Ta luôn có 

\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )

\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)

\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(a-b\right)^2\)

\(=10^2\)

\(=100\)

16 tháng 5 2021

`a/(2b+3c) +b/(2c+3a) + c/(2a+3b) >=3/5`
Thiếu đk `a,b,c>0`
`a/(2b+3c) +b/(2c+3a) + c/(2a+3b)`
`=a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)`
Áp dụng BĐT cosi-schwart: 
`a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)>=(a+b+c)^2/(5(ab+bc+ca))=(a^2+b^2+c^2+2ab+2bc+2ca)//(5(ab+bc+ca))`
Áp dụng cosi:`a^2+b^2+c^2>=ab+bc+ca`
`=>a^2/(2ab+3ac)+b^2/(2bc+3ab)+c^2/(2ac+3bc)>=(3(ab+bc+ca))/(5(ab+bc+ca))=3/5`
Dấu "=" xảy ra khi `a=b=c`