\(a^x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Ta có

Lập luận ra đpcm

23 tháng 12 2016

Ta có :

a^xyz=(a^x)^yz=(bc)^yz

=b^yz.c^yz

=(b^y)^z.(c^z)^y

=(ca)^z.(ab)^y

=c^z.a^z.a^y.b^y

=(bc).a^z.a^y.(ca)

=a^2.a^y.a^z.(bc)

=a^2.a^y.a^z.a^x

=a^(x+y+z+2)

=>xyz=x+y+z+2

14 tháng 1 2018

Câu hỏi của Đỗ thị như quỳnh - Toán lớp 7 | Học trực tuyến

 Ta có: \(\frac{a}{x}+\frac{y}{b}=1\)

\(\rightarrow\frac{a}{x}\cdot\frac{b}{y}+\frac{y}{b}\cdot\frac{b}{y}=1\cdot\frac{b}{y}\)

\(\rightarrow\frac{ab}{xy}+1=\frac{b}{y}\left(1\right)\)

Ta có: \(\frac{b}{y}+\frac{z}{c}=1\)

\(\rightarrow\frac{b}{y}=1-\frac{z}{c}\left(2\right)\)

Từ (1) và (2) \(\rightarrow\frac{ab}{xy}+1=1-\frac{z}{c}\)

\(\rightarrow\frac{ab}{xy}=\frac{-z}{c}\)          \(\rightarrow abc=-xyz\)

\(\rightarrow abc+xyz=0\)

12 tháng 1 2019

🤦‍♀️🤦‍♀️

31 tháng 8 2020

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

15 tháng 11 2023

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)

⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+���  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��

=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)

=> đpcm