Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
Vì \(a+m\ge a\)
\(b+m\ge b\)
\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\)
hok tốt
bài 1 ngắn vậy à?
ai làm bài 2 giúp mình đi
mình cần gấp, 2 hôm nữa phải nộp rồi
1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)
Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)
2) BĐT cần CM tương đương:
\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)
Dấu "=" xảy ra khi: a = b
Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn
Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N
giải giúp mình nhé!
mình cần gấpppppppppppppp
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}=A\)
vậy A>B
\(A=\frac{2011}{2012}+\frac{2012}{2013}\) \(và\) \(B=\frac{2011+2012}{2012+2013}\)
\(Ta\) \(có\) \(:\) \(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(B=\frac{2011}{4025}+\frac{2012}{4025}\)
\(Vì\) \(\frac{2011}{2012}>\frac{2011}{4025}và\frac{2012}{2013}>\frac{2012}{4025}\)
\(Nên\) \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)
\(Vậy\) \(A=\frac{2011}{2012}+\frac{2012}{2013}>B=\frac{2011+2012}{2012+2013}\)
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
Ta có : A = \(\frac{10^{2020}+1}{10^{2019}+1}\)
=> \(\frac{A}{10}=\frac{10^{2020}+1}{10^{2020}+10}=\frac{10^{2020}+10-9}{10^{2020}+10}=1-\frac{9}{10^{2020}+10}\)
Lại có : B = \(\frac{10^{2021}+1}{10^{2020}+1}\)
=> \(\frac{B}{10}=\frac{10^{2021}+1}{10^{2021}+10}=\frac{10^{2021}+10-9}{10^{2021}+10}=1-\frac{9}{10^{2021}+10}\)
Vì : \(\frac{9}{10^{2021}+10}< \frac{9}{10^{2020}+10}\Rightarrow1-\frac{9}{10^{2021}+10}>1-\frac{9}{10^{2020}+10}\Rightarrow\frac{B}{10}>\frac{A}{10}\Rightarrow B>A\)
Vậy B > A
Sửa \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
Giả sử ngược lại thì ta có \(\frac{a}{2003}=\frac{b}{2004}\)và ta cần chứng minh \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
Đặt \(\frac{a}{2003}=\frac{b}{2004}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\end{cases}}\)
Khi đó \(\frac{a+2003}{a-2003}=\frac{2003k+2003}{2003k-2003}=\frac{2003\left(k+1\right)}{2003\left(k-1\right)}=\frac{k+1}{k-1}\)(1)
\(\frac{b+2004}{b-2004}=\frac{2004k+2004}{2004k-2004}=\frac{2004\left(k+1\right)}{2004\left(k-1\right)}=\frac{k+1}{k-1}\)(2)
Từ (1) và (2) => \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)
=> đpcm
Không hiểu chỗ nào thì ib nhé :)
\(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\Leftrightarrow\frac{\frac{a}{2003}+1}{\frac{a}{2003}-1}=\frac{\frac{b}{2004}+1}{\frac{b}{2004}-1}\)
Đặt \(\frac{a}{2003}=x,\frac{b}{2004}=y\Rightarrow\frac{x+1}{x-1}=\frac{y+1}{y-1}\Leftrightarrow\left(x+1\right)\left(y-1\right)=\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow xy-x+y-1=xy+x-y-1\Leftrightarrow2x=2y\Leftrightarrow x=y\)-----> Xooooong :)))
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
Xét a>b thì:
\(am>bm\Rightarrow ab+am>ab+bm\)
\(\Rightarrow a\left(b+m\right)>b\left(a+m\right)\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Xét a=b thì \(a+m=b+m\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
Xét a<b thì \(am< bm\Rightarrow ba+am< ba+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
@Phan Gia Huy@Từ a> b không thể suy ra am > bm
Vì nếu như m âm thì bất đẳng thức sẽ đổi chiều.Kể cả trường hợp dưới
Mk chỉ góp ý thôi