Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\Rightarrow a=b=c=d\)
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{a}{3b}=\frac{a}{3a}\Rightarrow3b=3a\Rightarrow a=b\)
\(\frac{b}{3c}=\frac{b}{3b}\Rightarrow3b=3c\Rightarrow b=c\)
\(\frac{c}{3d}=\frac{c}{3c}\Rightarrow3c=3d\Rightarrow c=d\)
=>a=b=c=d
=>đpcm
Ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)
\(=\frac{1}{3}\)
Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)
Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)
Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)
Vậy a = b = c = d ( Đpcm )
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này :
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)
Chúc bạn học tốt!
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
Từ c(b+d)=2bd=>bc+cd=2bd
Ta lại có a+c =2b
Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)
=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)
+ , \(\frac{a}{b}=\frac{c}{d}\)= \(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)= \(\frac{a^8}{b^8}\) (1)
+ \(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)
Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)
dùng dãy tỉ số = nhau nhé
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Mặt khác ; \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)