Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
\(P=a^7b^3-a^3b^7\)
\(P=a^3b^3\left(a^4-b^4\right)\)
\(P=a^3b^3\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
Ta sẽ chứng minh \(P\) chia hết cho 5 và cho 6.
a) CM \(5|P\). Kí hiệu \(\left(a;b\right)\) là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu \(a\equiv b\left(mod5\right)\) cũng coi như hoàn tất. \(a+b\equiv0\left(mod5\right)\) cũng như thế.
Do đó ta loại đi được các trường hợp \(\left(0;0\right),\left(1;1\right),\left(2;2\right),\left(3;3\right),\left(4;4\right)\) và \(\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\) và \(\left(0;1\right),\left(0;2\right),\left(0;3\right),\left(0;4\right),\left(1;0\right),\left(2;0\right),\left(3;0\right),\left(4;0\right)\)
Ta chỉ còn lại 8 trường hợp là \(\left(1;2\right),\left(1;3\right),\left(2;4\right),\left(3;4\right)\) và các hoán vị. Nếu \(\left(a;b\right)\equiv\left(1;2\right)\left(mod5\right)\) thì \(a^2+b^2=\left(5k+1\right)^2+\left(5l+2\right)^2=25k^2+10k+1+25l^2+20l+4=5P+5⋮5\)
Các trường hợp còn lại xét tương tự \(\Rightarrow5|P\).
b) CM \(6|P\). Ta thấy \(a^3b^3\left(a-b\right)\left(a+b\right)\) luôn là số chẵn (nếu \(a\equiv b\left(mod2\right)\) thì \(2|a-b\), còn nếu \(a\ne b\left(mod2\right)\) thì \(2|a^3b^3\).
Đồng thời, cũng dễ thấy \(3|P\) vì nếu \(a\) hay \(b\) chia hết cho 3 thì coi như xong. Nếu \(a\equiv b\left(mod3\right)\) cũng xong. Còn nếu \(a+b\equiv0\left(mod3\right)\) thì cũng hoàn tất.
Suy ra \(6|P\)
Từ đó suy ra \(30|P\)
Ta sẽ chứng minh chia hết cho 5 và cho 6.
a) CM . Kí hiệu là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu cũng coi như hoàn tất. cũng như thế.
Do đó ta loại đi được các trường hợp và và
Ta chỉ còn lại 8 trường hợp là và các hoán vị. Nếu thì
Các trường hợp còn lại xét tương tự .
b) CM . Ta thấy luôn là số chẵn (nếu thì , còn nếu thì .
Đồng thời, cũng dễ thấy vì nếu hay chia hết cho 3 thì coi như xong. Nếu cũng xong. Còn nếu thì cũng hoàn tất.
Suy ra
Từ đó suy ra
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
abc chia hết cho 3 => 1 trong 3 số a,b,c chia hết cho 3 (chứng minh = phản chứng nhé)
Giả sử 1 trong 3 số k có số nào chia hết cho 3:
=> a=3m+1; b=3p+1; c=3n+1
Rồi suy ra a^3 +b^3 +c^3 bằng gì đó k chia hết cho 9 (làm biếng quá nên ghi z) => điều giả sử k đúng
=> 1 trong 3 số a,b,c có ít nhất 1 số chia hết cho 3 hay abc chia hết cho 3