K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

mình ko biết

25 ban oi

29 tháng 3 2018

???

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

19 tháng 6 2017

_c/m ... a,b,c nha

21 tháng 2 2021

a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> ab + bc + ca = \(\frac{a^2+b^2+c^2}{2}\)

=> \(\left(ab+bc+ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2a^2bc+2ab^2c+2abc^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)(vì a + b + c = 0)

Lại có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+a^2c^2}{a^2b^2c^2}=\frac{\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}{\left(abc\right)^2}\)

\(=\frac{\left(\frac{a^2+b^2+c^2}{2}\right)^2}{\left(abc\right)^2}=\left(\frac{\frac{a^2+b^2+c^2}{2}}{abc}\right)^2=\left(\frac{a^2+b^2+c^2}{2abc}\right)^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)là bình phương của 1 số hữu tỉ

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Sửa lại điều kiện $ab+bc+ac=1$ mới đúng nhé bạn

Thay $1=ab+bc+ac$ ta có:

$A=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$

$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)$

$=[(a+b)(b+c)(c+a)]^2$

Vì $a,b,c\in\mathbb{Q}$ nên $(a+b)(b+c)(c+a)\in \mathbb{Q}$

Do đó $A$ là bình phương của số hữu tỉ.

Ta có đpcm.

30 tháng 8 2019

\(ab+bc+ac=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)