Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)
DO:
\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)
\(\Rightarrow DPCM\)
Tích t vs ku
doan thi khanh linh copy đáp án trong câu hỏi của bạn Dương Nguyễn Ngọc Khánh
Bài làm của mình:
Có a2 + b2 = c2 + d2
\(\Rightarrow\) a2 - c2 = d2 - b2
\(\Rightarrow\)(a-c)(a+c) = (d-b)(d+b)
Mà theo đề bài a + b = c + d
\(\Rightarrow\) a - c = d - b
Nếu a = c
\(\Rightarrow\) a - c = d - b = 0
\(\Rightarrow\) d = b
\(\Rightarrow\) a2013 = c2013 và d2013 = b2013
\(\Rightarrow\) a2013 + b2013 = c2013 + d2013
Tương tự với a \(\ne\) c
a+b=c+d
=> (a+b)2=(c+d)2
=> a2+2ab+b2=c2+2cd+d2
=>2ab=2cd
=> a2-2ab+b2=c2-2cd+d2
=> (a-b)2=(c-d)2
Th1: a-b=c-d
Mà a+b=c+d
=> a-b+a+b=c+d+c-d
=> 2a=2c => a=c=> b=d=> a2013+b2013= c2013+d2013 (1)
Th2: a-b=d-c
Mà a+b=c+d
=> a+b+a-b= c+d+d-c
=>2a=2d=>a=d=>b=c=> a2013+b2013=c2013+d2013(2)
Từ (1) và (2) => đpcm
\(ab+bc+ac\le1\)
Ta có \(a^2+b^2+c^2=1\)
\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\)
Áp dụng bất đẳng thức Cô - si
\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\a^2+c^2\ge2\sqrt{a^2c^2}=2ac\end{matrix}\right.\)
Cộng theo từng vế
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow1\ge ab+bc+ac\) ( đpcm )
phải là \(ab+bc+ca\le1\) nha bởi vì dấu "=" vẫn xảy ra đó.
+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\le2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow ab+bc+ca\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=1\end{matrix}\right.\Leftrightarrow a=b=c=\pm\sqrt{\frac{1}{3}}\)
Lời giải:
Ta sẽ CMR $a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}(*)$
$\Leftrightarrow a^2+b^2+c^2\geq ab+bc+ac$
$\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ (luôn đúng với mọi $a,b,c$)
Do đó: $(*)$ đúng. Thay $a+b+c=2$ thì:
$a^2+b^2+c^2\geq \frac{4}{3}>1$
(chứ không phải $\geq 1$) bạn nhé.