K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Ai giúp t câu này vs

30 tháng 12 2018

Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow7^2=23+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=13\)

Ta lại có \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}-6=-\sqrt{a}-\sqrt{b}+1\Leftrightarrow\sqrt{ab}+\sqrt{c}-6=\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

Chứng minh tương tự:

\(\sqrt{bc}+\sqrt{a}-6=\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)\)

\(\sqrt{ac}+\sqrt{b}-6=\left(\sqrt{a}-1\right)\left(\sqrt{c}-1\right)\)

Vậy A=\(\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}=\dfrac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\dfrac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\dfrac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{c}-1+\sqrt{a}-1+\sqrt{b}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-3}{\sqrt{abc}+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}=\dfrac{7-3}{3+7-13-1}=-1\)

9 tháng 12 2019

Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

8 tháng 2 2019

Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)

Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)

Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)

\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)

Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)

Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.

25 tháng 9 2019

Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a​+b​+c​=7⇔c​=7−a​−b

Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab​+c​−61​=ab​+7−a​−b​−61​=(a​−1)(b​−1)1​

Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a​−1)(b​−1)1​+(b​−1)(c​−1)1​+(c​−1)(a​−1)1​

=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a​−1)(b​−1)(c​−1)a​+b​+c​−3​=abc​−(ab​+bc​+ca​)+(a​+b​+c​)−1a​+b​+c​−3​

=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab​+bc​+ca​)+7−17−3​=9−(ab​+bc​+ca​)4​

Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab​+bc​+ca​=2(a​+b​+c​)2−(a+b+c)​=13

Suy ra: N=\frac{4}{9-13}=-1N=9−134​=−1. Kết luận: N = -1.

25 tháng 8 2018

a) \(A=\dfrac{2}{\sqrt{3}+1}+\dfrac{6}{\sqrt{3}-1}+1\)

\(=\dfrac{3\left(\sqrt{3}-1\right)}{2}+\dfrac{6\left(\sqrt{3}+1\right)}{2}+\dfrac{2}{2}\)

\(=\dfrac{3\left(\sqrt{3}-1\right)+6\left(\sqrt{3}+1\right)+2}{2}\)

\(=\dfrac{3\sqrt{3}-3+6\sqrt{3}+6+2}{2}\)

\(=\dfrac{9\sqrt{3}+5}{2}\)

25 tháng 8 2018

a) \(A=\dfrac{2}{\sqrt{3}+1}+\dfrac{6}{\sqrt{3}-1}+1\)

\(=\dfrac{2\left(\sqrt{3}-1\right)}{2}+\dfrac{6\left(\sqrt{3}+1\right)}{2}+\dfrac{2}{2}\)

\(=\dfrac{2\left(\sqrt{3}-1\right)+6\left(\sqrt{3}+1\right)+2}{2}\)

\(=\dfrac{2\sqrt{3}-2+6\sqrt{3}+6+2}{2}\)

\(=\dfrac{8\sqrt{3}+6}{2}\)

\(=\dfrac{2\left(4\sqrt{3}+3\right)}{2}\)

\(=4\sqrt{3}+3\)

b: \(B=\dfrac{\sqrt{\dfrac{7+2\sqrt{6}}{2}\cdot2}\cdot\left(\sqrt{6}-1\right)}{2\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{2\sqrt{5}}=\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

NV
13 tháng 6 2021

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

1 tháng 9 2021

Cho a, b, c, d là các chữ số thỏa mãn: ab+ca=da ab-ca=a Tìm giá trị của d.