Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) <=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{a^2b}+\frac{3}{ab^2}=-\frac{1}{c^3}\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Khi đó, A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)
Xét: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Ta có đẳng thức sau: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
(Đẳng thức này chứng minh rất dễ nha, chỉ cần bung hết ra là được)
Vậy ta thế \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\)vào đẳng thức:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\)
\(=\frac{3}{abc}\)Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)---> Thế cái này vào A:
\(\Rightarrow A=abc.\frac{3}{abc}=3\)
Xoooooooong !!!!! :)))

Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có bổ đề
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
ÁP DỤNG BỔ ĐỀ VÀO P ta có
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Vậy P=3

Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc])))
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Mik ko biết có đúng ko??

Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3

Đặt \(A=abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)\)
Do a; b; c > 0 => A > 0
Giả sử \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4a^2c^2-c^4a^2b^2}{A}\ge0\)( tự quy đồng rồi rút gọn nhé, làm chi tiết dài lắm )
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4a^2c^2-2c^4a^2b^2}{A}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2+b^2c^2\right)^2+\left(b^2c^2+c^2a^2\right)^2+\left(c^2a^2+a^2b^2\right)^2}{A}\ge0\)(đúng)
Vậy \(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
cáh khác nè:từ
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{aa+aa+aa}{a^2+a^2+a^2}=1\)
bạn dưới làm sai rồi
P=1 MỚI ĐÚNG
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=>\(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
=>\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3=-\frac{1}{c^3}\)
=>\(\frac{1}{a^3}+\frac{1}{b^3}+3\cdot\frac{1}{a}\cdot\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{3}{ab}\cdot\left(-\frac{1}{c}\right)=\frac{3}{abc}\)
Ta có: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
\(=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot\frac{3}{abc}\)
=3