K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

18 tháng 11 2017

\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)

\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)

\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)

\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)

Dấu = xảy ra khi ....

24 tháng 1 2019

Ối,không ngờ đề gắt ~v

Theo Cô si,ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)

Suy ra \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Áp dụng vào,ta có: \(\frac{1}{a+2b+3c}=\frac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\right)\)

Chứng minh tương tự và cộng theo vế:

\(VT\le\frac{1}{9}\left[\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]\)

\(=\frac{1}{9}\left[3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]=\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Lại có BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng vào,ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\le\frac{1}{12}\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Nhân abc vào mỗi vế : \(VT.abc\le\frac{1}{6}\left(ab+bc+ca\right)=\frac{abc}{6}\)

Chia cả hai vế cho abc (vì a,b,c dương nên abc khác 0): \(VT\le\frac{1}{6}< \frac{3}{16}\)(đpcm)

Cũng không biết đúng hay sai nữa :v

24 tháng 1 2019

Lưu ý rằng: \(VT=\frac{1}{6}\Leftrightarrow a=b=c=3\)

20 tháng 7 2018

Thay \(a+b+c=3\) ta được:

\(VT=\frac{1}{a\left(a+b+c\right)+bc}+\frac{1}{b\left(a+b+c\right)+ca}+\frac{1}{c\left(a+b+c\right)+ab}\)

\(=\frac{1}{a^2+ab+ac+bc}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ca+bc+ab}\)

\(=\frac{1}{a\left(a+b\right)+c\left(a+b\right)}+\frac{1}{b\left(a+b\right)+c\left(a+b\right)}+\frac{1}{c\left(a+c\right)+b\left(a+c\right)}\)

\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)

\(=\frac{b+c+a+c+a+b}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{2\left(a+b+c\right)}{\sqrt{\left[\left(a+b\right)\left(a+c\right)\right].\left[\left(a+b\right)\left(b+c\right)\right].\left[\left(a+c\right)\left(b+c\right)\right]}}\)

\(=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}=VP\)  (Do \(a+b+c=3\))

=> ĐPCM.

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)