Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/question/1038454.html
Mình vừa làm cách đây 11 phút nhé !
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
\(\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)=2\left(a^{1005}b^{1005}+b^{1005}c^{1005}+c^{1005}a^{1005}\right)\)
\(\Leftrightarrow2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2c^{1005}a^{1005}=0\)
\(\Leftrightarrow\left(a^{2010}-2a^{1005}b^{1005}+b^{2010}\right)+\left(b^{2010}-2b^{1005}c^{1005}+c^{2010}\right)+\left(c^{2010}-2c^{1005}a^{1005}+a^{2010}\right)=0\)
\(\Leftrightarrow\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2=0\)
\(\Rightarrow\left(a^{1005}-b^{1005}\right)^2=0;\left(b^{1005}-c^{1005}\right)^2=0;\left(c^{1005}-a^{1005}\right)^2=0\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\left(a-a\right)^{20}+\left(a-a\right)^{11}+\left(a-a\right)^{2010}=0\)
2 ( a trên 2010 + b trân 2010 + c trên 2010 ) = 2 ( a trên 1005 b trên 1005 + b trên 1005 c trên 1005 + c trên 1005 a trên 1005 )
2a^ ( 2010 ) + 2b^ ( 2010 ) + 2c^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) - 2b^ ( 1005 ) c^ ( 1005 ) - 2c^ ( 1005 )a^ ( 1005 ) = O\)
( a^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) + b^ ( 2010 ) + ( b^( 2010 ) - 2b^ ( 1005 ) c^ ( 1005 ) + c^ ( 2010 ) + ( c^ ( 2010 ) - 2c^ ( 1005 ) a^ ( 1005 ) + a^ ( 2010 ) = 0\)
( a^ ( 1005 ) ^2 + ( b^ ( 1005 ) - c^ ( 1005 ) ^2 + ( c^ ( 1005 ) - a^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)
( a^ ( 1005 ) - b^ ( 1005 ) ^ 2= 0 : ( b^ ( 1005 ) - c^ ( 1005 ) ^2 = 0 : ( c^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)
a = b = c
( a - a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a - a ) ^ (2010 = 0\)
Vậy : ( a -a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a + a ) ^ ( 2010 = 0\)
\(a^{2010}+b^{2010}+c^{2010}=a^{1005}b^{1005}+b^{1005}c^{1005}+a^{1005}c^{1005}\)
=>\(2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2a^{1005}c^{1005=0}\)
=>\(\left(a^{1005}-b^{1005}\right)\left(b^{1005}-c^{1005}\right)\left(a^{1005}-c^{1005}\right)=0\)
=>a=b=c
\(A=\left(b-b\right)^{20}+\left(b-b\right)^{11}+\left(c-c\right)^{2010}=0\)
Đặt \(\left\{{}\begin{matrix}a^{1005}=x\\b^{1005}=y\\c^{1005}=z\end{matrix}\right.\) \(\Rightarrow x^2+y^2+z^2=xz+xz+yz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2yz\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z\)
\(\Rightarrow a^{1005}=b^{1005}=c^{1005}\Rightarrow a=b=c\)
\(\Rightarrow M=0\)
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c