Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích lần lượt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1\)(tự nhân ra hộ mình nhé)
\(=\left(a+b+c\right)-\left(ab+bc+ca\right)\)(vì abc=1)
Theo đề bài ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\)(vì abc=1)
\(\Rightarrow\left(a+b+c\right)-\left(ab+bc+ca\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Ta có: abc = 1, thế vào ta được:
\(\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)
\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\)
\(=\frac{b^2c^2}{a^2bc\left(b+c\right)}+\frac{c^2a^2}{b^2ac\left(c+a\right)}+\frac{a^2b^2}{c^2ab\left(a+b\right)}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel, ta có:
\(VT\ge\frac{\left(bc+ca+ac\right)^2}{abc\left(2ab+2bc+2ca\right)}=\frac{\left(bc+ca+ac\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
a) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\frac{c}{ab}-\frac{a}{bc}-\frac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (Đúng)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (Đpcm)
Mai mk giup cho nhe
đơn giản :
a + b + c = 1/a + 1/b + 1/c
\(a+b+c=\frac{ab+bc+ac}{abc}\)
Mà abc = 1 nên a + b + c = ab + bc + ac
cần chứng minh : ( a - 1 ) ( b - 1 ) ( c - 1 ) = 0
xét ( a - 1 )( b - 1 )( c - 1 ) = ( ab -a - b + 1 ) ( c - 1 )
= abc -ab - ac + a - bc + b + c - 1
= ( abc - 1 ) + ( a + b + c ) - ( ab + bc + ac )
= 0