Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)**Phương trình có một nghiệm duy nhất
↔ 2 ≠ \(\dfrac{-1}{m}\)
↔ 2m≠ -1
↔m ≠ \(\dfrac{-1}{2}\)
***Phương trình vô nghiệm
↔ 2= \(\dfrac{-1}{m}\) ≠ \(\dfrac{1}{5}\)
↔\(\left\{{}\begin{matrix}2=\dfrac{-1}{m}\\\dfrac{-1}{m}\ne\dfrac{1}{5}\end{matrix}\right.\)
↔\(\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(nhận\right)\\m\ne-5\end{matrix}\right.\)
Vậy.............
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\) (1)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+ayz+bxz}{abc}\right)=1\)
Kết hợp với (1) ta có đpcm
Cách này của mình là suy đoán thui nha
Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)
\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)
Chia TH:
TH1:p=q
Tương tự p=r thì cũng thu về p=q=r
TH2: nguyên cái trong ngoặc vuông
Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)
Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)
Cũng thu đc p=q=r
Do đó từ 2 TH cũng thu về PT:
\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)
Rồi vậy không biết làm tiếp :D
À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó