Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left (\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)
Áp dụng công thức trên (cho tất cả các phần)
a) \(\left\{\begin{matrix} \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\\ \frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\\ \frac{1}{c}+\frac{1}{a}\geq \frac{4}{a+c}\end{matrix}\right.\) \(\Rightarrow \) cộng theo về, rút gọn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Ta có đpcm.
b) Áp dụng CT: \(\left\{\begin{matrix} \frac{1}{a+b}+\frac{1}{a+c}\geq \frac{4}{a+b+a+c}=\frac{4}{2a+b+c}\\ \frac{1}{b+c}+\frac{1}{a+c}\geq \frac{4}{a+b+2c}\\ \frac{1}{a+b}+\frac{1}{b+c}\geq \frac{4}{a+2b+c}\end{matrix}\right.\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq 2\left (\frac{1}{a+2b+c}+\frac{1}{2a+b+c}+\frac{1}{a+b+2c}\right)\)
Ta có đpcm.
c) Áp dụng hai phần a và b:
\(\text{VP}\leq \frac{1}{2}\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\leq \frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow \text{VP}\leq \frac{4}{4}=1\) (đpcm)
Dấu bằng xảy ra ở tất cả các phần đều là khi \(a=b=c\)
Bài 1a)
Áp dụng bất đẳng thức Cô-si cho từng cặp ta có
\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)
\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)
\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)
\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )
Bài 1b)
Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có
\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )
Bài 1c) Ta có
\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)
\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)
\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)
\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)
\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)
Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có
\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)
\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )
Bài 2a)
Áp dụng bất đẳng thức Cô-si cho từng cặp ta có
\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)
\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )
Bài 2b)
Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng BĐT Cô-si cho vế trái ta có
\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )
Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)
\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)
\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)
Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )
Lời giải:
a) Áp dụng BĐT Bunhiacopxky:
\(\text{VT}=(\sqrt{a^3}^2+\sqrt{b^3}^2+\sqrt{c^3}^2)\left (\sqrt{\frac{1}{a}}^2+\sqrt{\frac{1}{b}}^2+\sqrt{\frac{1}{c}}^2\right)\geq (\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2})^2\)
\(\Leftrightarrow \text{VT}\geq (a+b+c)^2\) (đpcm)
b)
Khai triển ta có:
\(3(a^3+b^3+c^3)\geq (a^2+b^2+c^2)(a+b+c)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(a+c)\)
Áp dụng BĐT Cauchy:
\(a^3+a^3+b^3\geq 3\sqrt[3]{a^6b^3}=3a^2b\)
\(b^3+b^3+c^3\geq 3\sqrt[3]{b^6c3}=3b^2c\)
\(c^3+c^3+a^3\geq 3\sqrt[3]{c^6a^3}=3c^2a\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)
Hoàn toàn tương tự, ta cũng cm được: \(a^3+b^3+c^3+ab^2+bc^2+ca^2\)
Suy ra \(2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(c+a)\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $a=b=c$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left (\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)(abc+abc+abc)\geq (ab+bc+ac)^2\)
\(\Leftrightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq \frac{(ab+bc+ac)^2}{3abc}\) $(1)$
Áp dụng BĐT Cauchy:
\(\left\{\begin{matrix} a^2b^2+b^2c^2\geq 2ab^2c\\ a^2b^2+c^2a^2\geq 2a^2bc\\ b^2c^2+c^2a^2\geq 2abc^2\end{matrix}\right.\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Leftrightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)
Từ \((1),(2)\Rightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq a+b+c\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
b) Ta có:
\(\text{VT}+3=(a+b+c)\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng BĐT Bunhiacopxky:
\(\left ( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \right )(a+b+b+c+c+a)\geq (1+1+1)^2=9\)
\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)
\(\Rightarrow \text{VT}+3\geq (a+b+c).\frac{9}{2(a+b+c)}=\frac{9}{2}\Rightarrow \text{VT}\geq \frac{3}{2}\)
Do đó ta có đpcm.
đặt 1+m=p^2; đk : m>=-1 ; p>=0 (*)
đặt 2x=y
BPT tương đương
\(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p< 0\) (1)
xét pt: \(y^2-\left(p^2+p-1\right)y+\left(p^2-1\right)p=0\) (2)
\(\Delta_y=\left(p^2-1+p\right)^2-4p\left(p^2-1\right)=\left(p^2-1\right)^2+2p\left(p^2-1\right)+p^2-4p\left(p^2-1\right)\)
\(\Delta_y=\left(p^2-1-p\right)^2\ge0\) với mọi p theo (*)
Vậy (2) có nghiệm với mọi (p) theo (*)
\(\left[\begin{matrix}y_1=\frac{\left(p^2+p-1\right)-\left(p^2-p-1\right)}{2}=\frac{2p}{2}=p\\y_2=\frac{\left(p^2+p-1\right)+\left(p^2-p-1\right)}{2}=\frac{p^2-2}{2}\end{matrix}\right.\)
xét f(p)=y2-y1= \(\frac{p^2-2}{2}-p=\frac{p^2-p-2}{2}=\frac{\left(p+1\right)\left(p-2\right)}{2}\\ \)
=> \(\left\{\begin{matrix}p=-1;2\Rightarrow f\left(p\right)=0\\-1< p< 2\Rightarrow\\p>2\Rightarrow f\left(p\right)>0\end{matrix}\right.f\left(p\right)< 0}\)
Vậy ta có kết luận(1):
1.Nếu \(P=2\Rightarrow\left(2\right)cóN_0....y_1=y_2\) thì (1) vô Nghiệm
2.Nếu \(0\le P< 2\Rightarrow\left(2\right)cóN_0....y_1>y_2\)=> (1) có nghiệm \(y_2< y< y_1\)
3.Nếu \(P>2\Rightarrow\left(2\right)cóN_0....y_1< y_2\) => (1) có nghiệm \(y_1< y< y_2\)
Bạn làm tiếp phần y--> x ; p--> m
(đơn giải rồi)
Mục đích là so sánh y1 và y2 để xem cái nào lớn , nhỏ hay bằng nhau
Lời giải:
Áp dụng công thức tính góc giữa hai đường thẳng thôi:
\(\cos (d,\Delta)=\frac{|(m+3)(m-2)-(m-1)(m+1)|}{\sqrt{(m+3)^2+(m-1)^2}\sqrt{(m-2)^2+(m+1)^2}}=\cos 90=0\)
\(\Leftrightarrow (m+3)(m-2)-(m-1)(m+1)=0\)
\(\Leftrightarrow m-5=0\Leftrightarrow m=5\)
Vậy $m=5$
a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)
Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh
Dấu "=" xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)
\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{50}\)
\(A< 2-\frac{1}{50}< 2\)
Vậy A < 2
\(\Rightarrow A< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\) hay \(A< 2\)
VT=\(\overrightarrow{MB}\)+\(\overrightarrow{BA}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{DC}\)
=(\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\))+(\(\overrightarrow{BA}\)+\(\overrightarrow{DC}\))
=\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{0}\) (vì \(\overrightarrow{BA}\) và \(\overrightarrow{DC}\) đối nhau)
=\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)(đpcm)
Lời giải:
a)
Áp dụng BĐT Cauchy:
\((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)
Do đó ta có đpcm. Dấu bằng xảy ra khi \(a=b=c\geq 0\)
b) Áp dụng BĐT Cauchy:
\((a+b+c)(a^2+b^2+c^2)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
Do đó ta có đpcm. Dấu bằng xảy ra khi \(a=b=c\geq 0\)
c) Áp dụng BĐT Cauchy:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)
Cộng theo vế:\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{abc}}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)
\(\Leftrightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\)
Dấu bằng xảy ra khi $a=b=c$
Ace Legona Akai Haruma Giúp em với .