K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

25 tháng 9 2017

Kẽ phân giác AD của tam giác ABC, \(AD=l\)

Ta có:

\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)

Ta lại có:

\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)

\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)

25 tháng 9 2017

bài bạn alibaba kiểu zì zì tam giác ban đầu đã vuông đâu