K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

\(P=\dfrac{ab\left(a+b\right)+c\left(a^2+b^2\right)}{abc}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\).

Áp dụng bất đẳng thức AM - GM:

\(P\ge\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{ab}}{\sqrt{a^2+b^2}}=\left(\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}\right)-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{a^2+b^2}}\ge3\sqrt[3]{\dfrac{a^2+b^2}{ab}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}}-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{2ab}}=6-\left(4-\sqrt{2}\right)=2+\sqrt{2}\).

Đẳng thức xảy ra khi và chỉ khi tam giác ABC vuông cân tại A.

 

15 tháng 8 2017

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

15 tháng 8 2017

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h

3 tháng 9 2018

Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)

\(\Rightarrow c^2-2ab\ge0\)

\(\Leftrightarrow c^2\ge2ab\)

\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)

\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM ) 

3 tháng 9 2018

Ta có a+b \(\le\)c√2

<=> (a+b) 2\(\le\)(c√2)2

<=> a2+2ab+b2\(\le\)2c2

<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2

<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)

=> a+b \(\le\)c√2

NV
29 tháng 7 2021

Tìm điều gì của A em? Chứ với mỗi một bộ số a;b;c sẽ cho 1 kết quả A khác nhau rồi đó

29 tháng 7 2021

Dạ  thầy là tìm gtnn của A ạ

 

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5