Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+b-c=x; b+c-a=y; a+c-b=z
Ta có: x+y>=2 căn xy (bđt cauchy)
Tương tự: y+z>=2 căn yz
z+x>=2 căn zx
=> (x+y)(y+z)(z+x)>=8xyz
<=> 2b.2c.2a>=8(a+b-c)(b+c-a)(a+c-b)
<=> 8abc>=8(a+b-c)(b+c-a)(a+c-b)
<=> abc>=(a+b-c)(b+c-a)(a+c-b)
Dấu ''='' xảy ra khi a=b=c
Vậy abc>=(a+b-c)(b+c-a)(a+c-b)
Áp dụng bất đẳng thức AM-GM ta có:
(a+b−c)(b+c−a)≤(a+b−c+b+c−a)24=b2(a+b−c)(b+c−a)≤(a+b−c+b+c−a)24=b2
Thiết lập các bất đửng thức tương tự cộng lại ta có dpcm.
2) Ta có: Áp dụng bất đẳng thức:
\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)
Tương tự chứng minh được:
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế 3 bất đẳng thức trên với nhau ta được:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vì a,b,c là độ dài 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)
\(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)
\(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)
\(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)
Dấu "=" <=> tam giác đó đều
\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\) (1)
\(\Leftrightarrow a^3-a^2\left(b+c\right)+abc+b^3-b^2\left(c+a\right)+abc+c^3-c^2\left(a+b\right)+abc\ge0\)
\(\Leftrightarrow a\left(a^2-ab-ac+bc\right)+b\left(b^2-bc-ba+ac\right)+c\left(c^2-ca-cb+ab\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-a\right)\left(b-c\right)+c\left(c-a\right)\left(c-b\right)\ge0\) đúng
\(\Rightarrow\left(1\right)\) đúng
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow\Delta ABC\) đều
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)(1)
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)(2)
Dễ thấy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)nên \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Tương tự \(b+c\le\sqrt{2\left(b^2+c^2\right)}\)\(a+c\le\sqrt{2\left(a^2+c^2\right)}\)
\(\Rightarrow2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Rightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Do \(a,b,c\)là ba cạnh của một tam giác nên
\(\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)
Tương tự \(\sqrt{b^2+c^2}< \sqrt{a^2+2bc}\)\(\sqrt{a^2+c^2}< \sqrt{b^2+2ac}\)
Cộng vế theo vế ta được
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\)
Áp dụng BĐT \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\), ta có :
\(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\le\sqrt{3\left(c^2+2ab+c^2+2bc+b^2+2ac\right)}\)
\(=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}\left(a+b+c\right)\)
P/s ko bt có đúng ko
Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\forall a,b,c\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\forall a,b,c\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\forall a,b,c\end{cases}}\)
Nhân vế với vế của 3 bất đẳng thức trên ta được :
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)
Mà dễ thấy \(abc>0\)
Nên từ \(\left(1\right)\) : \(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)