\(\left(b-c\right)^2< a^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a)Ta có BĐT tam giác :

\(\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\end{matrix}\right.\)

\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b-c\right)\right]>0\)

\(\Rightarrow a^2-\left(b-c\right)^2>0\Rightarrow a^2>\left(b-c\right)^2\)

b)Áp dụng BĐT ở câu a ta có:

\(a^2+b^2+c^2>\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2>b^2+c^2-2bc+a^2+c^2-2ac+a^2+b^2-2ab\)

\(\Leftrightarrow2ab+2bc+2ca>2a^2+2b^2+2c^2\)

\(\Leftrightarrow ab+bc+ca>a^2+b^2+c^2\)

1 tháng 4 2017

ủa anh ơi bài b) kêu chứng minh là \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) sao anh lại đi chứng minh \(a^2+b^2+c^2< ab+bc+ca\) ở cuối bài .-.

NV
9 tháng 2 2020

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

NV
9 tháng 2 2020

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

14 tháng 4 2017

Lời giải

a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)

\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)

\(\Delta=\dfrac{-a^3+36}{3a}\)

\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)

\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm

b)

\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)

\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)

Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm

21 tháng 8 2016

Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)

\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)

VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)

Dấu''='' xra\(\Leftrightarrow\)a=b=c

NV
29 tháng 6 2020

a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)

b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)

c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?

d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)

8 tháng 2 2020

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

8 tháng 2 2020

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i

NV
9 tháng 2 2020

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

NV
9 tháng 2 2020

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

BĐ tương đương

26 tháng 4 2017

A B C A' B' C' a)Do A',B',C' là trung điểm BC,CA,AB=> A'B' song song với AB,B'C'song song với BC,C'A' song song với CA

\(\overrightarrow{A'B'}=\left(6;3\right)\) => VTPT của đường thẳng AB là: \(\overrightarrow{n}=\left(1;-2\right)\)

và C' thuộc (AB)=>Phương trình đường thẳng AB là:

(AB): x-2y-6=0

Tương tự ta có phương trình đường thẳng BC là:

(BC): x+4=0

Tọa độ điểm B là nghiệm hệ

\(\left\{{}\begin{matrix}\text{x-2y-6=0}\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-5\end{matrix}\right.\)

=>B(-4;-5)

A'(-4;1) là TĐ của BC => tọa độ C(-4;7)

C'(2;-2) là TĐ của AB =>tọa độ A(8;1)

b) Gọi tọa độ trọng tâm G của tam giác A'B'C' là G(x;y)

=>\(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=0\)

=>\(\left\{{}\begin{matrix}\left(-4-x\right)+\left(2-x\right)+\left(2-x\right)=0\\\left(1-y\right)+\left(4-y\right)+\left(-2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

=>G(0;1)

Thay vào tính

Ta có:\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\) =(8-4-4;1-1+7-1-5-1)=(0;0)

=>G là trọng tâm tam giác ABC=>ĐPCM