Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Theo đề ta được:
\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
cho a,b,c \(\inℕ^∗\). Chứng minh:
M=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số tự nhiên
\(\text{Vì }a,b,c\inℕ^∗\Rightarrow\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}\Rightarrow M>\frac{a+b+c}{a+b+c}=1}\)(1)
\(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{a+c}< \frac{c+b}{c+a+b}\end{cases}}\Rightarrow M< \frac{2.\left(a+b+c\right)}{a+b+c}=2\)(2) (chỉ áp dụng cho p/s có tử bé hơn mẫu)
từ (1) và (2) => 1<M<2 => M không phải là STN
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Ta có
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c+a}< \frac{b}{b+c}< \frac{b+a}{b+c+a}\)
\(\frac{ c}{c+a+b}< \frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow1< M< 2\Rightarrow\)M không phải là số tự nhiên
Ta có:
\(\frac{a}{b+c}< 1\left(a< b+c\right)\)
\(\frac{b}{c+a}< 1\left(b< c+a\right)\)
\(\frac{c}{a+b}< 1\left(c< a+b\right)\)
Mà \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) là phân số. Như vậy nếu phân số lớn nhất có tử bé hơn mẫu là \(\frac{1}{2}\). Vậy nếu:
\(\frac{a}{b+c}=\frac{1}{2};\frac{b}{c+a}=\frac{1}{2};\frac{c}{a+b}=\frac{1}{2}\) thì tổng sẽ là \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}=1,5< 2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(dpcm\right)\)