Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1
vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v
bài này
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
thay vào
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1
=>minP = 1
dấu bằng xảy ra <=. a = b = c = 1/√3
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)
k và kết bạn cho mình nha !!!
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Đặt biểu thức cần tìm GTNN là A .
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+\dfrac{1}{4a}\text{≥}2\sqrt{a.\dfrac{1}{4a}}=1\)
\(b+\dfrac{1}{4b}\text{≥}2\sqrt{b.\dfrac{1}{4b}}=1\)
\(c+\dfrac{1}{4c}\text{≥}2\sqrt{c.\dfrac{1}{4c}}=1\) ≥
⇒ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3\)
⇔ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ⇔ \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\)⇒ \(A_{Min}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz: \(S=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{64}{8}=8\)
\(P=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2-2=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)
\(=\left(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\right)+\left(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\right)-2\)
Áp dụng BĐT AM-GM cho 3 số dương:
\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}.\frac{1}{a}.\frac{1}{a}}=\frac{3}{b}\)
\(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge3\sqrt[3]{\frac{b^2}{c^3}.\frac{1}{b}.\frac{1}{b}}=\frac{3}{c}\)
\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge3\sqrt[3]{\frac{c^2}{a^3}.\frac{1}{c}.\frac{1}{c}}=\frac{3}{a}\)
\(\Rightarrow P\ge\frac{3}{b}+\frac{3}{c}+\frac{3}{a}-2=3-2=1\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\) thì
\(\Rightarrow\hept{\begin{cases}x+y+z=1\\P=\frac{y^3}{x^2}+\frac{z^3}{y^2}+\frac{x^3}{z^2}\end{cases}}\)
Ta có:
\(\frac{x^3}{z^2}+z+z\ge3x,\frac{y^3}{x^2}+x+x\ge3y,\frac{z^3}{y^2}+y+y\ge3z\)
\(\Rightarrow\frac{x^3}{z^2}\ge3x-2z,\frac{y^3}{x^2}\ge3y-2x,\frac{z^3}{y^2}\ge3z-2y\)
\(\Rightarrow P\ge3x-2z+3y-2x+3z-2y=x+y+z=1\)
Lời giải:
Vì $a+b+c=1$ nên:
\(P=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\left\{\begin{matrix} a+a+b+c\geq 4\sqrt[4]{a^2bc}\\ b+a+b+c\geq 4\sqrt[4]{b^2ac}\\ c+a+b+c\geq 4\sqrt[4]{abc^2}\end{matrix}.\right.\)
\(\Rightarrow (a+a+b+c)(b+a+b+c)(c+a+b+c)\geq 64\sqrt[4]{a^4b^4c^4}=64abc\) (nhân theo vế)
Do đó:
\(P\geq \frac{64abc}{abc}=64\)
Vậy \(P_{\min}=64\Leftrightarrow a=b=c=\frac{1}{3}\)