K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

Áp dụng bất đẳng thức Chevbyshev cho hai bộ đơn điệu cùng chiều \(\left(\dfrac{2}{a+b},\dfrac{2}{b+c},\dfrac{2}{c+a}\right)\) và \(\left(c\left(a+b\right),a\left(b+c\right),b\left(c+a\right)\right)\) ta có \(2c+2a+2b=\dfrac{2}{a+b}.c\left(a+b\right)+\dfrac{2}{b+c}.a\left(b+c\right)+\dfrac{2}{c+a}.b\left(c+a\right)\ge\dfrac{1}{3}\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)=\dfrac{2}{3}\left(ab+bc+ca\right)\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\).

Mà \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}=a+b+c\) nên \(ab+bc+ca\le3\).