K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

6 tháng 8 2020

Áp dụng bất đẳng thức Cauchy ta có

\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

tương tự ta có

 \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(c+1\right)\left(a+1\right)}};\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

khi đó ta được

\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\Rightarrow ab\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)

Áp dụng tương tự ta được\(bc\ge\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1};ca\ge\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

Cộng theo vế các bất đẳng thức trên ta được 

\(ab+bc+ca\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

mặt khác theo bất đẳng thức Cauchy ta lại có

\(\frac{\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\ge3\)

suy ra \(ab+bc+ca\ge12\)vậy bất đẳng thức được chứng minh 

đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

12 tháng 1 2020

phép đặt trên thực ra là chuẩn hóa bdt

14 tháng 8 2019

:). Sử dụng Bất đẳng thức Schur.

Giải:

Đặt: \(a+b+c=p\)

       \(abc=r\)

       \(ab+bc+ac=q\)

Theo bất đẳng thức Schur:

=> \(p^2\ge3q\) , \(2p^3+9r\ge7pq\) => \(p^3-4pq+9r\ge0\)=> \(p^3-4pq+9\left(4-p\right)\ge0\Leftrightarrow p^3-4pq-9p+36\ge0\)(1)

và \(p^3\ge27r\)

Từ giả thiết ta có: \(p+r=4\)=> \(p^3+27\ge27r+27p=27\left(r+p\right)=27.4\)

=> \(p^3+27p-27.4\ge0\)\(\Leftrightarrow\left(p^3-27\right)+\left(27p-27.3\right)\ge0\)

\(\Leftrightarrow\left(p-3\right)\left(p^2+3p+9+27\right)\ge0\Leftrightarrow\left(p-3\right)\left(p^2+3p+36\right)\ge0\Leftrightarrow p-3\ge0\)

\(\Leftrightarrow p\ge3\)

Vì a, b, c >0 => \(abc>0\)=> r>0

=> \(3\le p< 4\)

=> \(\left(p+3\right)\left(p-4\right)\left(p-3\right)\le0\Leftrightarrow p^3-4p^2-9p+36\le0\) (2)

Từ (1), (2) => \(-4pq\ge-4p^2\Leftrightarrow q\le p\) hay  ab+bc+ac\(\le\)a+b+c

"=" xảy ra : \(a=b=c\)

  và \(a+b+c+abc=4\)

<=> a=b=c=1

1 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{6+a-c}=\frac{ab}{a+b+c+a-c}=\frac{ab}{2a+b}\)

\(=\frac{ab}{a+a+b}\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)=\frac{1}{9}\left(2b+a\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{bc}{6+b-a}\le\frac{1}{9}\left(2c+b\right);\frac{ca}{6+c-b}\le\frac{1}{9}\left(2a+c\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{9}\cdot3\left(a+b+c\right)=\frac{1}{3}\cdot\left(a+b+c\right)=\frac{6}{3}=2\)

Đẳng thức xảy ra khi \(a=b=c=2\)

4 tháng 2 2017

Trước tiên chứng minh:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

(nhân vô rút gọn chuyển hết sang trái được)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)

\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)

Từ đây ta có:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)

\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)

Vậy \(ab+bc+ca\le\frac{3}{4}\)

14 tháng 4 2017

1 cách khác của tui (câu hỏi của trg tuấn nghĩa) trên hh nhé