K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

26 tháng 8 2020

( a - b + c )2 

= [ ( a - b ) + c ]2

= ( a - b )2 + 2( a - b )c + c2

= a2 - 2ab + b2 + 2ac - 2bc + c2

= a2 + b2 + c2 - 2ab - 2bc + 2ca ( đpcm )

26 tháng 8 2020

\(\left(a-b+c\right)^2\)

\(=\left(a-b+c\right).\left(a-b+c\right)\)

\(=a.\left(a-b+c\right)-b.\left(a-b+c\right)+c.\left(a-b+c\right)\)

\(=a^2-ab+ac-\left(ab-b^2+bc\right)+ac-bc+c^2\)

\(=a^2-ab+ac-ab+b^2-bc+ac-bc+c^2\)

\(=a^2-2ab+2ac+b^2-2bc+c^2\)

\(=a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Rightarrow\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\left(đpcm\right).\)

2 tháng 12 2017

(a+b+c)2=a2+b2+c2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=> bc=-ab-ac

=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)

Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)

                     \(\frac{c^2}{c^2+2ab}=...\)

=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...

                                         =\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                                        =1

29 tháng 7 2017

Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta lại có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)

\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

19 tháng 12 2022

Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn

8 tháng 4 2016

( a + b + c ) ^2 = a^2+b^2+c^2 + 2(ab+ac+bc)

=> ab = -ac-bc

    bc= -ab-ac

    ac= -ab-bc

a^2 + 2bc = a^2 + 2bc - ( ab + ac + ac)

               = a^2 + bc - ab - ac

               = ( a-c) ( a-b)

b^2 + 2ca = ( c-b) ( a-b)

c^2 + 2ab = (b-c) (a-c)

A= a^2/ ( a-c) (a-b) + b^2/ ( c-b) (a-b) + c^2/ ( b-c)(a-c)

rồi quy đồng là xong 

17 tháng 9 2017

\(\left(a+b+c\right)^2=[\left(a+b\right)+c]^2\)

\(=\left(a+b\right)^2+2.\left(a+b\right).c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

11 tháng 6 2015

\(\left(a+b+c\right)^2=a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)\)

\(=a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc\)

11 tháng 6 2015

Đặt A = a + b

  Biến đổi vế trái ta có

:\(\left(A+c\right)^2=A^2+2Ac+c^2\)=\(\left(a+b\right)^2+2\left(a+b\right)c+c^2=a^2+b^2+2ab+2ac+2bc+c^2\)

Vậy vế trái bằng vế phải đẳng thức được chứng minh

 

13 tháng 3 2020

Áp dụng BĐt Bunhiacopski dạng phân thức:

\(\text{Σ}_{cyc}\frac{a^2}{a^2+2bc}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" khi a = b = c

26 tháng 8 2020

Bài làm:

Ta có: \(\left(a-b-c\right)^2\)

\(=\left[a-\left(b+c\right)\right]^2\)

\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)

\(=a^2-2ab-2ac+b^2+2bc+c^2\)

\(=a^2+b^2+c^2-2ab+2bc-2ac\)

26 tháng 8 2020

( a - b - c )2

= [ ( a - b ) - c ]2

= ( a - b )2 - 2( a - b )c + c2

= a2 - 2ab + b2 - 2ac + 2bc + c2

= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )