Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)
CMTT: \(ab+bc>b^2;ab+ac>a^2\)
Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?
Ta chứng minh bất đẳng thức: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (a,b,c,x,y,z dương) (Hệ quả của bất đẳng thức Cauchy-Schwarz (Bunyakovsky))
\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\sqrt{y}^2+\sqrt{z^2}\right]\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Ta có:
\(A=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ca}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(=\frac{a^2+2bc-a^2}{a^2+2bc}+\frac{b^2+2ca-b^2}{b^2+2ac}+\frac{c^2+2ab-c^2}{c^2+2ab}\)
\(=3-\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)\)
\(\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=3-1=2\)
=> A<=1
a,b,c dương
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\Rightarrow\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)
Xét biểu thức\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\) \(\frac{\left(y+2\right)\left(z+2\right)+\left(z+2\right)\left(x+2\right)+\left(x+2\right)\left(y+2\right)}{\left(x+2\right)\left(y+2\right)\left(z+2\right)}\)
\(=\frac{\left(yz+2y+2z+4\right)+\left(zx+2z+2x+4\right)+\left(xy+2x+2y+4\right)}{\left(xy+2x+2y+4\right)\left(z+2\right)}\)
\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+2\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(\le\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+3\sqrt{\left(xyz\right)^2}+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
BĐT cần chứng minh tương đương:
\(a^2+b^2+c^2\ge2ab-2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng