K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 6 2021

Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng 

do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ. 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn 

nên \(a^2+b^2+c^2\)là số lẻ. 

8 tháng 3 2016

ai tra loi duoc cau hoi nay toi se k kick het

8 tháng 3 2016

Xin lỗi mk mới học lớp 5

8 tháng 1

\(a^2+c^2=b^2+d^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)

Ta có

\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy 

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2

\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)

\(\Rightarrow a+b+c+d⋮2\)

Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2

=> a+b+c+d là hợp số

8 tháng 1

A = [(a +b) + (c + d)].[(a + b) + (c + d)]

A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)

A  = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2

A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd

A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]

A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]

⇒ A ⋮ 2  ⇒ a + b + c + d  ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2

Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)

 

12 tháng 8 2021

B = 2^2023 chứ nhỉ

A = 2^0 + 2^1 + 2^2 + ... + 2^2022

2A = 2^1 + 2^2 + 2^3 + ... + 2^2023

=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)

=> A = 2^2023 - 2^0

=> A = 2^2023 - 1

=> A và B là 2 stn liên tiếp

12 tháng 8 2021

Ta có:

A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021

⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022

⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)

⇔A=22022−20⇔A=22022−20

⇔A=22022−1⇔A=22022−1

Mà B=22022⇒B=A+1B=22022⇒B=A+1

⇒A⇒A và BB là 22 số tự nhiên liên tiếp. 

    chúc học tốt.

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{101}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{101}-2\)

\(a+2=2^{101}-2+2=2^{201}\)

\(\Rightarrow x=101\)

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{99}-2\)

\(a+2=2^{99}-2+2=2^{99}\)

\(\Rightarrow x=99\)

29 tháng 10 2023

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)