Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: cạnh nào cũng nhỏ hơn 60
câu 2: số nguyên dương nào chẳng được
Tìm 3 số tự nhiên a, b, c sao cho cả 3 số abc, ab + bc + ca và a + b + c + 2 đều là các số nguyên tố
Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11
a=0 => b=11(loại)
a=1 => b=0 => n=2010
với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n ≥ 2013-28=1985
xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103
do n ≥ 1985 => a ≥ 8
a=8 => b=7,5 (loại)
a=9 => b=2 => n=1992
Bài 2: Chắc là hợp số :D
từ \(a^2+b^2+c^2=e^2+f^2+d^2\)
=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\) ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)
=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)
=>a+b+c ≡ d+e+f (mod 2)
=> a+b+c+d+e+f chia hết cho 2
a)
giải thích:
b) a nguyên dương, nguyên âm thì tích ab là số nguyên âm.
c) b = 0 thì tích ab bằng 0.
Trả lời
a+b+c=abc (1)
Vì a,b,c có vai trò như nhau
Giả sử \(a\le b\le c\)
\(\Rightarrow a+b+c\le3c\)
\(\Rightarrow a+b\le3\)( nếu \(c\ne0\))
\(\Rightarrow\orbr{\begin{cases}a\ne1;b=2\\a=1;b=3\end{cases}}\)
- Nếu a=1; b=2
=> c=3 (Chọn)
- Nếu a=1; b=3
=>c=2 (loại)
Vậy (a;b;c)\(\in\left\{\left(1;2;3\right);\left(1;3;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(3;1;2\right);\left(3;2;1\right)\right\}\)
Đặt k=a2+b2ab+1(k∈Z)k=a2+b2ab+1(k∈Z)
Giả sử kk không là số chính phương
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu
S={(a,b)∈NxN|a2+b2ab+1=k}S={(a,b)∈NxN|a2+b2ab+1=k}
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+BA+B đạt min
Giả sử A≥B>0A≥B>0 . Cố định BB ta còn số nữa khác AA thảo phương trình k=x+B2xB+1k=x+B2xB+1
⇔x2−kBx+B2−k=0⇔x2−kBx+B2−k=0 phương trình có nghiệm AA
Theo Viet : {A+x2=kBA.x2=B2−k{A+x2=kBA.x2=B2−k
Suy ra x2=kB−A=B2−kAx2=kB−A=B2−kA
Dễ thấy x2x2 nguyên.
Nếu x2<0x2<0 thì x22−kBx2+B2−k≥x22+k+B2−k>0x22−kBx2+B2−k≥x22+k+B2−k>0 (vô lí) . Suy ra x2≥0x2≥0 do đó (x2,B)∈S(x2,B)∈S
Do A≥B>0⇒x2=B2−kA<A2−kA<AA≥B>0⇒x2=B2−kA<A2−kA<A
Suy ra x2+B<A+Bx2+B<A+B (trái với giả sử A+BA+B đạt min)
Suy ra kk là số chính phương