Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
Gọi số dư của a và b khi chia m là n
Ta có: a=m*k+n
b=m*h+n
=>a-b=m*k+n -(m*h+n)
=m*k+n-m*h-n
=(m*k-m*h)+(n-n)
=m(k-h) luôn chia hết m
Đpcm
Từ \(a+b+c=6\Rightarrow\hept{\begin{cases}a+b=6-c\\b+c=6-a\\a+c=6-b\end{cases}}\)
\(\Rightarrow A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)
\(=\frac{6-a+5}{a+1}+\frac{6-b+4}{b+2}+\frac{6-c+3}{c+3}\)
\(=\frac{11-a}{a+1}+\frac{10-b}{b+2}+\frac{9-c}{c+3}\)
\(=-1+\frac{12}{a+1}-1+\frac{12}{b+2}-1+\frac{12}{c+3}\)
\(=-3+12\left(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwrarz dưới dạng Engel ta có :
\(A\ge-3+12.\frac{\left(1+1+1\right)^2}{6+\left(a+b+c\right)}=-3+12.\frac{9}{12}=6\) (đpcm)
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1);(2) => 1 < M < 2 => đpcm
a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
Từ \(\frac{x}{3}=10=>x=30\)
Từ \(\frac{y}{4}=10=>y=40\)
Từ \(\frac{z}{5}=10=>z=50\)
Vậy x=30,y=40,z=50
b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)
Đpcm
a)Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{4}\)= \(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20
-> \(\frac{x}{3}\)= 20 ->x=20*3=60
\(\frac{y}{4}\)=20->y=20*4=80
\(\frac{z}{5}\)=20->z=20*5=100
Vậy x=60, y=80, z=100.
Bài 1 :
Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)
\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )
Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)
Bài 2 , để chiều nhé bạn
Bài 3 :
Cách 1 :
\(\left|x-1004\right|-\left|x+1003\right|\)
+ ) Xét \(x< -1003\)suy ra
\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)
+ ) Xét \(-1003\le x< 1004\). Suy ra
\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)
+ ) Xét \(x\ge1004\). Suy ra
\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)
Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)
Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007
Vậy \(A_{max}=2007\)khi \(x< -1003\)
\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)
\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)
Cái này đúng vì a, b, c không âm
Dấu = xảy ra khi \(a=b=c=0\)
ko biết đâu vì em mới học lớp 5 thôi!