K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2021

\(P=2a+ab\left(2+c\right)\le2a+\dfrac{a}{4}\left(b+2+c\right)^2=2a+\dfrac{a}{4}\left(7-a\right)^2\)

\(P\le\dfrac{1}{4}\left(a^3-14a^2+57a-72\right)+18=18-\dfrac{1}{4}\left(8-a\right)\left(a-3\right)^2\le18\)

\(P_{max}=18\) khi \(\left(a;b;c\right)=\left(3;2;0\right)\)

27 tháng 3 2022

thầy ơi tại sao dòng một lại có 2a+\(\dfrac{a}{4}\)(b+2+c)^2 ạ?

NV
19 tháng 9 2021

Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)

5 tháng 6 2021

\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Bất đẳng thức hiển nhiên đúng

Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi  \(a=b=c\)

-Chúc bạn học tốt-

Bạn giải thích hộ mình từ dòng 1 xuống dòng 2 đc ko ạ ?

21 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+2c\right)}=\frac{\sqrt{3a\left(b+2c\right)}}{\sqrt{3}}\le\frac{\frac{3a+b+2c}{2}}{\sqrt{3}}=\frac{3a+b+2c}{2\sqrt{3}}\)

Tương tự ta cũng có:\(\sqrt{b\left(c+2a\right)}\le\frac{3b+c+2a}{2\sqrt{3}}\)

               \(\sqrt{c\left(a+2b\right)}\le\frac{3c+a+2b}{2\sqrt{3}}\)

Cộng theo vế các BĐT lại ta được:

\(VT\le\frac{3a+b+2c}{2\sqrt{3}}+\frac{3b+c+2a}{2\sqrt{3}}+\frac{3c+a+2b}{2\sqrt{3}}=\frac{6a+6b+6c}{2\sqrt{3}}=\frac{6.4}{2\sqrt{3}}=4\sqrt{3}\)

21 tháng 12 2018

Dấu "=" xảy ra khi \(a=b=c=\frac{4}{3}\)

10 tháng 3 2017

Mình sẽ giải theo pp tập thể dục nha : 

Theo bài ra , ta có : 

\(a^2+b^2+c^2=3\)

\(\Leftrightarrow a^2+b^2+c^2-3=0\)

\(\Leftrightarrow a^2-1+b^2-1+c^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)\left(a+1\right)=0\\\left(b-1\right)\left(b+1\right)=0\\\left(c-1\right)\left(c+1\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\c=-1\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=1;a=-1\\b=1;b=-1\\c=1;c=-1\end{cases}}\)

mà a,b,c là ba số không âm 

=) a = b = c =1 

Thay a = b = c = 1 vào biểu thức ở đầu bài , ta được 

\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)

\(=\frac{1}{1+2+3}+\frac{1}{1+2+3}+\frac{1}{1+2+3}\)

\(=\frac{1}{6}\times3=\frac{1}{2}\)

Cái phần bé hơn hình như là có cái j đó sai sai vì gt đầu bài là ba số ko âm mà nên làm sao mà bé hơn được 

3 tháng 11 2017

https://diendantoanhoc.net/topic/80743-a2bb2cc2aabbccaleq-9/

8 tháng 7 2020

Khá là ngại đánh máy bạn vào TKHĐ của mình xem hình ảnh nhé !Không có mô tả.

2 tháng 5 2021

132-79=

2 tháng 5 2021

ta có :

\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)

tương tự rồi cộng theo vế : 

\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)

áp dụng bđt cô si

 \(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)

tương tự rồi cộng theo vế 

\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)

\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)

đến đây chịu :)))))

NV
28 tháng 3 2023

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)