Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
Bài 2:
Ta có: \(\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Chứng minh tương tự ta có:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
Ta nhân các BĐT vừa nhận được ta có:
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
Hay: \(abc\le\frac{1}{8}\)
\(\Rightarrow Max_Q=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Bài 1 :
\(\left(1+\frac{1}{a}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)-8abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2-8abc=0\)
\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)=0\)
\(\Leftrightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2=0\)
Do a , b , c dương nen
\(b\left(a-c\right)^2;c\left(a-b\right)^2;a\left(b-c\right)^2\ge0\forall a,b,c\)
\(\Rightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\) thay vào P ta được
\(P=\frac{a^3+b^3+c^3}{a.a.a}=\frac{3a^3}{a^3}=3\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=-3\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=9\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=9\)
Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=7\)nên \(2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow\frac{c}{abc}+\frac{b}{abc}+\frac{a}{abc}=1\)\(\Rightarrow\frac{1}{A}=\frac{a+b+c}{abc}=1\Rightarrow A=1\)
Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)
Nếu a + b = 0 thì c = 2014 thay vào M :
\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)
\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)
Tương tự với các trường hợp còn lại.
Vậy \(M=\frac{1}{2014^{2013}}\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\\\frac{1}{1+b}=1-\frac{1}{1+a}+1-\frac{1}{1+c}=\frac{a}{1+a}+\frac{c}{1+c}\\\frac{1}{1+c}=1-\frac{1}{1+b}+1-\frac{1}{1+a}=\frac{b}{1+b}+\frac{a}{1+a}\end{cases}}\)
Áp dụng bđt AM-GM:
\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
\(\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\frac{a}{1+a}+\frac{c}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)
Nhân theo vế: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}."="\Leftrightarrow a=b=c=\frac{1}{2}\)