Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân ra được a2+b2+c2=2ab+2ac+2bc
=>(a+b+c)^2=4ab+4ac+4bc
=>36=4M
=>M=9
a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( a - c )2
=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc - c2 + a2 - 2ac +c2
=> a2 + b2 + c2 = 2ab + 2bc + 2ac
Có : a + b + c = 6
=> ( a + b + c )2 = 62
=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 36
Mà a2 + b2 + c2 = 2ab + 2bc + 2ac
=> 2ab + 2ac + 2bc + 2ab + 2ac + 2bc = 36
=> 4ab + 4ac + 4bc = 36
=> ab + ac + bc = 9
Mà M = ab + ac + bc
Vậy M = 9
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Ta có: (a - b)2 + (b - c)2 + (a - c)2 = a2 + b2 + c2
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + a2 - 2ac + c2 = a2 + b2 + c2
<=> a2 + b2 + c2 = 2(ab + bc + ac)
<=> ab + bc + ac = \(\frac{a^2+b^2+c^2}{2}\) (1)
Ta lại có: a + b + c = 6
<=> (a + b + c)2 = 36
<=> a2 + b2 + c2 + 2(ab + bc + ac) = 36
<=> a2 + b2 + c2 + a2 + b2 + c2 = 36 (vì a2 + b2 + c2 = 2(ab + bc + ac)
<=> 2(a2 + b2 + c2) = 36 <=> a2 + b2 + c2 = 18
<=> \(\frac{a^2+b^2+c^2}{2}=9\)(2)
Từ (1) và (2) => ab + ac + bc = 9
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=18\) ( do ab+bc+ca = 9 )
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=18+2.9=36\)
\(\Rightarrow\)\(a+b+c=6\) ( do a,b,c là các số thực dương)
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(a^2+b^2+c^2=2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(a^2+b^2+c^2-2.\left(ab+bc+ca\right)=0\)( cùng bớt \(a^2+b^2+c^2\)ở cả 2 vế )
\(a^2+b^2+c^2-2.9=0\)
\(a^2+b^2+c^2=18\)
Ta có:
\(\left(a+b+c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
\(=18+2.\left(ab+bc+ca\right)\)
\(=18+2.9\)
\(=18+18\)
\(=36\)
\(\Rightarrow a+b+c=\sqrt{\left(a+b+c\right)^2}=\sqrt{36}=6\)
Vậy \(a+b+c=6\)
Tham khảo nhé~
(a-b)2+(b-c)2+(c-a)2=a2+b2+c2
=> 2(a2+b2+c2)-2ab-2bc-2ca=a2+b2+c2
=>a2+b2+c2-2ab-2bc-2ca=0 (1)
a+b+c=6
=> (a+b+c)2=36
=>a2+b2+c2+2ab+2bc+2ca=36 (2)
lấy (2) trừ (1) ta đc:
4(ab+bc+ca)=36
=>ab+bc+ca=9
vậy M=ab+bc+ca=9