Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê cô đã giải cho cậu bài này chưa bày mình với please mình đang rất cần
goi UCLN( a,b , c) la d
ta co
a chia het cho d , b chia het cho d , c chia het cho d
suy ra a.bchia het cho d
b.c chia het cho d
ca cung chia het cho d
suy ra abc cung chia het cho d
va a+b+c cung chia het cho d
trái với (a,b,c)=1
suy ra (ab+bc+ca; a+b+c;abc)=1
vay UCLN(A,B,C )=1
Ta có: \(ab=c\left(a-b\right)\)
<=> \(c^2=ac-bc-ab+c^2\)
<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)
<=> \(c^2=\left(c-b\right)\left(a+c\right)\)
Đặt: ( c - b ; a + c ) = d
=> \(c^2⋮d^2\)=> \(c⋮d\)(1)
và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)
Từ (1); (2) => \(b;a⋮d\)(3)
Từ (1); (3) và (a; b ; c ) =1
=> d = 1 hay c - b; a + c nguyên tố cùng nhau
Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương
=> c - b ; a + c là 2 số chính phương
Khi đó tồn tại số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv ( vì c, u,, v nguyên dương )
Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)
\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau