K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

\(P=\frac{2a}{2\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2}+\frac{2b}{2\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2}\)\(+\frac{2c}{2\sqrt{\left(a+1\right)\left(a^2-a+1\right)}+2}\)

\(P\ge\frac{2a}{b^2+4}+\frac{2b}{c^2+4}+\frac{2c}{a^2+4}\)

\(2P\ge\frac{4a}{b^2+4}+\frac{4b}{c^2+4}+\frac{4c}{a^2+4}=a-\frac{ab^2}{b^2+4}+b-\frac{bc^2}{c^2+4}+a-\frac{ca^2}{a^2+4}\)

\(2p\ge a+b+c-\left(\frac{ab^2}{4b}+\frac{bc^2}{4c}+\frac{ca^2}{4a}\right)\)

\(2P\ge6-\frac{1}{4}\left(ab+bc+ca\right)\ge6-\frac{1}{12}\left(a+b+c\right)^2=3\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=2\)

30 tháng 7 2018

\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)

Cứ tiếp tục như vậy ta sẽ có đpcm. dấu = xảy ra khi a=b=c=1

31 tháng 8 2018

Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:

\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)

Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)

Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm

1 tháng 9 2018

Sai rồi nhé

KT lại đi bạn ơi

9 tháng 9 2018

ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)

làm tương tự ta có : \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\)\(\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)

cộng quế theo quế \(\Rightarrow\) (đpcm)

9 tháng 9 2018

bạn làm sai rồi

cái dòng đầu tiên í

\(\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ne\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\)

9 tháng 9 2018

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\frac{a+2\sqrt{a}+1}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\) 

Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{4\sqrt{b}}{b^3+c^2}\) 

                \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{4\sqrt{c}}{a^3+a^2}\)  

Cộng từng vế: \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\right)\)(đpcm) 

26 tháng 6 2016

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)