\(\hept{\begin{cases}a< b< c\\a+b+c=6\\ab+bc+ac=9\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Bổ xung đề a,b,c dương 

1/ Chứng minh a < 1 

Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)

\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)

Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)

\(\Rightarrow a< 1\)

Chứng minh b > 1 

Giả sử \(a< b\le1\Rightarrow ab< 1\)

Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)

\(\Rightarrow c\left(a+b\right)>8\)

Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)

Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)

\(\Rightarrow6-c+\frac{c}{2}>4\)

\(\Rightarrow c< 4\)

\(\Rightarrow a+b>2\)(trái giải thuyết)

\(\Rightarrow b>1\)

Tương tự làm phần còn lại nhé.

1 tháng 6 2017

tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp

1 tháng 6 2017

Dễ thấy: \(a,b,c\) là 3 nghiệm của pt

\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-6x^2+9x+m\left(m=-abc\right)\)

Đặt \(f\left(x\right)=x^3-6x^2+9x+m\)

\(f'\left(x\right)=3x^2-12x+9\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) có cực đại tại \(x=1\); cực tiểu tại \(x=3\Rightarrow a< 1< b< 3< c\left(1\right)\)

\(f\left(x\right)\) có 3 nghiệm \(a,b,c\) khác nhau (với hệ số của \(x^3>0)\), nên \(f_{max}>0;f_{min}< 0\)

\(f_{max}=f\left(1\right)=1-6+9+m=m+4>0\Rightarrow m>-4\)

\(f_{min}=f\left(3\right)=3^3-6\cdot3^2+9\cdot3+m< 0\Rightarrow m< 0\)

\(f\left(4\right)=4^3-6\cdot4^2+9\cdot4^2+m=m+4\). Do \(m>-4\)\(\Rightarrow f\left(4\right)>0\)

Mà trong khoảng \(\left(3;+\infty\right)\) hàm \(f(x) \) đồng biến, và \(f(c)=0;f(4)>0\) suy ra \(c<4(2)\)

Từ \(\left(1\right);\left(2\right)\)\(0< a< b< c\) ta có ĐPCM

1 tháng 6 2017

Tuấn Anh Phan Nguyễn ; Nguyễn Huy Tú ; Ace Legona giúp với khocroi!

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

21 tháng 10 2016

1/

a3+b3+c3=2abc

vì a+b+c=0

=> a+b=-c

GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0

khi đó. A=2.(-1).1.0=0

=> GTNN của A là......

21 tháng 10 2016

giúp với, bạn Devil làm không đúng đâu nha

22 tháng 3 2019

Nhân c vào 2 vế BĐT a<b, ta được:

ac<bc (1)

Nhân b vào 2 vế BĐT c<d, ta được:

bc<bd (2)

Từ (1) và (2) suy ra:

ac<bd (tính chất bắc cầu)

15 tháng 8 2019

Đề có sai ko bạn ?

15 tháng 8 2019

Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)

theo đề bài:

\(a^2+b^2+ab+bc+ac< 0\)

=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)

=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)

Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)

=> \(a^2+b^2< c^2\)