K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Không mất tính tổng quát ta giả sử:

\(a\ge b\ge c>0\)

\(BDT\Leftrightarrow a\left(b+c-a\right)\left(b-c\right)^2+b\left(a-b\right)\left(a-c\right)\left(a+b-c\right)\ge0\)

Cái này đúng

\(\Rightarrow\)ĐPCM

23 tháng 5 2019

Ta có :

a2b ( a - b ) + b2c ( b - c ) + c2a ( c - a )

= ( a3b + b3c + c3a ) - ( a2b2 + b2c2 + c2a2 )

\(abc\left(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\right)-\left(abc\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\ge abc.\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}=abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\)

Mà \(\left(a+b+c\right)^3\ge27abc\)

\(abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\ge abc\left[\left(a+b+c\right)-\frac{\left(a+b+c\right)^3}{3\left(a^2+b^2+c^2\right)}\right]\)

\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}\left[3\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^3\right]\)

\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}2\left(a^3+b^3+c^3-3abc\right)\)

vì a3 + b3 + c3 - 3abc \(\ge\)0 nên a2b(a - b ) + b2c ( b - c ) + c2a ( c - a ) \(\ge\)0

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

16 tháng 11 2019

Theo em được biết thì bài a) chính là BĐT IMO 1983. Có cách giải quen thuộc là dùng phép thế Ravi ngoài ra còn có một lời giải tuyệt đẹp của Bernhard Leeb như sau:

a) Giả sử \(a=max\left\{a,b,c\right\}\). Ta có:\(VT=a\left(b+c-a\right)\left(b-c\right)^2+b\left(a+b-c\right)\left(a-b\right)\left(a-c\right)\ge0\)

Ngoài ra, từ cách phân tích trên em cũng tìm được một cách phân tích như sau:

Giả sử \(c=max\left\{a,b,c\right\}\). Ta có:

\(VT=\frac{\left[3ab+b\left(c-b\right)+4a\left(c-a\right)\right]\left(b-c\right)^2+b\left(a+b-c\right)\left(b+c-2a\right)^2}{4}\ge0\)(qed)

b) BĐT Schur bậc 3.

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

1 tháng 7 2017

\(ab\left(a+b-2c\right)+bc\left(b+c-2a\right)+ca\left(c+a-2b\right)\ge0\)

\(\Leftrightarrow ba^2+ab^2-2abc+cb^2+bc^2-2abc+ca^2+ac^2-2abc\ge0\)

\(\Leftrightarrow\left(ab^2+ac^2-2abc\right)+\left(ba^2+bc^2-2abc\right)+\left(ca^2+cb^2-2abc\right)\ge0\)

\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)  (luôn đúng)

2 tháng 6 2020

BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)

\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)

\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)

Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)

Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)

Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)

\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)

Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)

=> (*) đúng

Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)

Đẳng thức xảy ra <=> a=b=c=1

5 tháng 6 2020

đay nha