K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)

sau đó chứng minh tương tự và cộng theo từng vế thôi 

2 tháng 1 2017

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\\\frac{b}{c-a}=-\frac{a}{b-c}-\frac{c}{a-b}\\\frac{c}{a-b}=-\frac{a}{b-c}-\frac{b}{c-a}\end{matrix}\right.\) (1)

\(\left\{\begin{matrix}\frac{a}{\left(b-c\right)^2}=\frac{a}{b-c}.\frac{1}{b-c}\\\frac{b}{\left(c-a\right)^2}=\frac{b}{c-a}.\frac{1}{c-a}\\\frac{c}{\left(a-b\right)^2}=\frac{c}{a-b}.\frac{1}{a-b}\end{matrix}\right.\)

Ta có : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

\(\Rightarrow\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

Thay điều (1) vào biểu thức ta có :

\(\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

\(\Rightarrow\left(-\frac{b}{c-a}-\frac{c}{a-b}\right).\frac{1}{b-c}+\left(-\frac{a}{b-c}-\frac{c}{a-b}\right).\frac{1}{c-a}+\left(-\frac{a}{b-c}-\frac{b}{c-a}\right).\frac{1}{a-b}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(b-c\right)\left(c-a\right)}-\frac{c}{\left(a-b\right)\left(c-a\right)}-\frac{a}{\left(b-c\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{a}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(a-b\right)\left(b-c\right)}-\frac{c}{\left(c-a\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b-a}{\left(c-a\right)\left(b-c\right)}-\frac{c-a}{\left(a-b\right)\left(b-c\right)}-\frac{c-b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\left[\frac{b+a}{\left(c-a\right)\left(b-c\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(c+a\right)\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(c+b\right)\left(b-c\right)^2\left(c-a\right)\left(a-b\right)}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right]=0\)

\(\Rightarrow-\left\{\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(b+a\right)\left(a-b\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)\right]}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right\}=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(b-a\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(a^2-b^2\right)+\left(c^2-a^2\right)+\left(b^2-c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(-b^2+b^2\right)+\left(-a^2+a^2\right)+\left(-c^2+c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{0}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow0=0\) ( đpcm )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\)  (thỏa mãn  \(\left(\alpha\right)\)  )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=0;b=1;c=2\)  (thỏa mãn  \(\left(\alpha\right)\)  )

25 tháng 6 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)=\frac{a+b}{a-b}\cdot\frac{a-b}{a+b}+\frac{a+b}{a-b}\left(\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)

\(=1+\frac{a+b}{a-b}\cdot\frac{\left(b-c\right)\left(c+a\right)+\left(c-a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}=1+\frac{a+b}{a-b}\cdot\frac{bc+ab-c^2-ac+bc+c^2-ab-ac}{-a\cdot-b}\)

\(=1+\frac{\left(a+b\right)\left(2bc-2ac\right)}{\left(a-b\right)ab}=1+-\frac{2c\left(a+b\right)\left(a-b\right)}{\left(a-b\right)ab}=1+\frac{-2c\cdot-c}{ab}=1+\frac{2c^2}{ab}\left(đpcm\right)\)

25 tháng 6 2018

Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)thay vào biểu thức đã cho:

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)\(=\frac{-c}{a-b}\left(\frac{a-b}{-c}+\frac{b-c}{-a}+\frac{c-a}{-b}\right)\)

\(=1+\frac{-c\left(b-c\right)}{-a\left(a-b\right)}+\frac{-c\left(c-a\right)}{-b\left(a-b\right)}=1+\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\)

\(=1+\frac{bc\left(b-c\right)}{ab\left(a-b\right)}+\frac{ac\left(c-a\right)}{ab\left(a-b\right)}=1+\frac{b^2c-bc^2+ac^2-a^2c}{ab\left(a-b\right)}\)

\(=1+\frac{c\left(b^2-a^2\right)-\left(bc^2-ac^2\right)}{ab\left(a-b\right)}=1+\frac{c\left(b-a\right)\left(a+b\right)-c^2\left(b-a\right)}{ab\left(a-b\right)}\)

\(=1+\frac{\left(b-a\right).\left[c\left(a+b\right)-c^2\right]}{ab\left(a-b\right)}=1+\frac{\left(a-b\right).\left[c^2-c\left(a+b\right)\right]}{ab\left(a-b\right)}\)

\(=1+\frac{c^2-\left(-c\right).c}{ab}=1+\frac{c^2-\left(-c^2\right)}{ab}=1+\frac{2c^2}{ab}\)(đpcm).

7 tháng 10 2016

Ta có a3 + b3 +c3 -3abc = (a+b)-3ab(a+b) - 3abc + c3 
                                    = (a+b+c)[(a+b)2 -c(a+b) +c2 ] -3ab(a+b+c)

                                    = 1/2 (a+b+c)(2a2 +2b2 +2c2 -2ab-2bc-2ac)

                                    = 1/2 (a+b+c) [(a-b)2 +(b-c)2 + (c-a)2 ] 

                                    =0 ( vì bài dài nên mk nhắc giải thích bạn tự hiểu nhé)

=> a+b+c=0 hoặc a=b=c

Th1: a+b+c=0 => b-c=-a; c-a=-b; a-b=-c

=> P= 1

Th2 : a=b=c Loại (vì mẫu ko thể bằng không)

Vậy P=1

bài làm còn sơ sài mong bạn thông cảm

  

7 tháng 10 2016

Online Math sai rồi nhé.

a + b + c = 0 thì b + c mới là - a

ĐÚng là b - c = -a - 2c

Tương tự với c - a, a - b

Em tính ra , băn khoăn mỗi chỗ đó nên mới không làm được bài toán này. 

18 tháng 7 2016

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

18 tháng 7 2016

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)