K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 7 2020

\(2ab+6bc+2ac=7abc\Rightarrow\frac{6}{a}+\frac{2}{b}+\frac{2}{c}=7\)

\(A=\frac{4}{\frac{1}{b}+\frac{2}{a}}+\frac{9}{\frac{1}{c}+\frac{4}{a}}+\frac{4}{\frac{1}{b}+\frac{1}{c}}\ge\frac{\left(2+3+2\right)^2}{\frac{1}{b}+\frac{2}{a}+\frac{1}{c}+\frac{4}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{49}{\frac{6}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{49}{7}=7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=c=1\end{matrix}\right.\)

13 tháng 8 2016

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
16 tháng 2 2020

\(\frac{1}{a}\ge1-\frac{2}{2b+1}+1-\frac{3}{3c+2}=\frac{2b-1}{2b+1}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\)

Tương tự: \(\frac{2}{2b+1}\ge\frac{a-1}{a}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\)

\(\frac{3}{3c+2}\ge\frac{a-1}{a}+\frac{2b-1}{2b+1}\ge2\sqrt{\frac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\)

Nhân vế với vế:

\(\frac{6}{a\left(2b+1\right)\left(3c+2\right)}\ge\frac{8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)}{a\left(2b+1\right)\left(3c+2\right)}\)

\(\Rightarrow\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\frac{3}{4}\)

19 tháng 1 2021

Áp dụng BĐT Cosi cho 2018 số:

\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)

\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)

\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)

Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)

\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)

\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)

\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)

Vậy \(S>6^{2018}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

11 tháng 3 2019

\(P=\sqrt{c\left(a+b\right)}+\frac{\sqrt[3]{8.8.\left(2b+3c\right)}}{4}\)

\(\le\frac{c+a+b}{2}+\frac{8+8+2b+3c}{12}=\frac{6a+8b+9c+16}{12}\le\frac{32+16}{12}=4\)