Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=sin^22a+cos^22a+sin^22b+cos^22b+2sin2a.sin2b+2cos2a.cos2b\)
\(P=2+2\left(sin2a.sin2b+cos2a.cos2b\right)=2+2cos\left(2a-2b\right)\)
\(P=2+2cos\frac{\pi}{3}=3\)
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC=2sinC\left[cos\left(A-B\right)+cosC\right]\)
\(=4sinC.cos\left(\frac{A+C-B}{2}\right).cos\left(\frac{A-B-C}{2}\right)\)
\(=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{2A-\pi}{2}\right)=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{\pi-2A}{2}\right)\)
\(=4sinC.cos\left(\frac{\pi}{2}-B\right).cos\left(\frac{\pi}{2}-A\right)\)
\(=4sinA.sinB.sinC\)
Lời giải:
Sử dụng các công thức lượng giác ta thực hiện biến đổi biểu thức như sau:
\(\cos 2A+\cos 2B+\cos =2\cos \frac{2A+2B}{2}\cos \frac{2A-2B}{2}+\cos ^2C-\sin ^2C\)
\(=2\cos (A+B)\cos (A-B)+2\cos ^2C-(\sin ^2C+\cos ^2C)\)
\(=2\cos (\pi -C)\cos (A-B)+2\cos ^2C-1\)
\(=2\cos ^2C-2\cos C\cos ^2(A-B)-1\)
\(=2[\cos ^2C-\cos C\cos (A-B)+\frac{1}{4}\cos ^2(A-B)]-\frac{1}{2}\cos ^2(A-B)-1\)
\(=2[\cos C-\frac{1}{2}\cos (A-B)]^2-\frac{1}{2}\cos ^2(A-B)-1\)
Ta thấy :
\(2[\cos C-\frac{1}{2}\cos (A-B)]^2\geq 0\)
\(\cos ^2(A-B)\leq 1\) (tính chất hàm cos)
\(\Rightarrow \cos 2A+\cos 2B+\cos 2C\geq 2.0-\frac{1}{2}.1-1=\frac{-3}{2}\)
Ta có đpcm.
\(cos2A+cos2B+cos2C=2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC.cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC\left[cos\left(A-B\right)-cosC\right]-1\)
\(=-2cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]-1\)
\(=-4cosC.cosA.cosB-1\)
\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=-4sinC.sinA.sin\left(-B\right)=4sinA.sinB.sinC\)