Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a2(b+c)=b2(c+a)
=>a2(b+c)-b2(c+a)=0
=>a2b+a2c-b2c-b2a=0
(a-b)(ab+ac+cb)=0
Vì a khác b khác c =>ab+ac+bc=0
=>ab+ac=-bc=>a(c+b)=-bc=>a2(c+b)=-abc=2014
=>ac+bc=-ab=>c(a+b)=-ab=>c2(a+b)=-abc=2014
Vậy..................................................
![](https://rs.olm.vn/images/avt/0.png?1311)
vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:
a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)
cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1
![](https://rs.olm.vn/images/avt/0.png?1311)
d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 = 0
=> | ( a-b)^2 = 0 => a=b
| ( a-c)^2 = 0 => a=c
| ( b-c)^2 = 0 => b=c
=>>> a=b=c
![](https://rs.olm.vn/images/avt/0.png?1311)
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> $\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}$a^2+(a−c)^2b^2+(b−c)^2 =(a−c)^2+2b(a−c)+(a−c)^2(b−c)^2+2a(b−c)+(b−c)^2 =2(a−c)^2+2b(a−c)2(b−c)^2+2a(b−c) =2(a−c)(a−c+b)2(b−c)(b−c+a) =a−cb−c
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> \(\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Rightarrow bc+ca+ab=0\)
\(\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ca=-bc-ab\\ab=-bc-ca\end{cases}}\)
\(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ba}\)
\(A=\frac{a^2}{a^2+bc-ac-ab}+\frac{b^2}{b^2+ca-bc-ab}+\frac{c^2}{c^2+ab-bc-ca}\)
\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Mình tiếp tục nhé
\(A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)=\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy A = 1