Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Đây là tích của 3 số nguyên liên tiếp nên trong 3 số nguyên liên tiếp tồn tại 1 bội số của 2 và 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2;3\)
Mà \(\left(2,3\right)=1\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)
\(\Rightarrow a^3-a⋮6\left(1\right)\)
CMTT , ta có : \(b^3-b⋮6;c^3-c⋮6\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a^3-a+b^3-b+c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Mà \(a+b+c⋮6\)
\(\Rightarrow a^3+b^3+c^3⋮6\left(đpcm\right)\)
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
bạn kiếm kiểu gì cx ko có ai giải đâu, đề này sai r, nãy mình sửa mới đúng
Với số tự nhiên a bất kì thì a^2 chia 3 dư 0,1 ( Xét a=3k,a=3k+1,a=3k+2 )
Áp dụng :
VT chia 3 dư 0,1,2 VP chia 3 dư 0,1.
Do đó muốn có nghiệm thì a,b không được cùng số dư là 1 khi chia cho 3
=>Tồn tại một số chia hết cho 3.
Tương tự: a^2 chia 4 dư 0,1(xét a=4k,a=4k+1,a=4k+2,a=4k+3)
=>Tồn tại một số chia hết cho 4
a^2 chia 5 dư 0,1,4(xét a=5k,...)
VT chia 5 dư 0,1,2,3,4 mà VP chia 5 dư 0,1,4
Xảy ra khi tồn tại ít nhất một số bên vế phải chia hết cho 5
=>abc chia hết cho 3x4x5=60 (đpcm)
Giả thiết a, b, c nguyên; a² = b²+c²
* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3
=> abc chia hết cho 3 (1)
* ta biết số n² chia 4 dư 0 hoặc dư 1
nếu n chẳn => n² chia 4 dư 0
nếu n lẻ: n = 2k+1 => (2k+1)² = 4k²+4k+1 chia 4 dư 1
từ a² = b²+c² => b² và c² khi chia 4 không thể cùng dư 1
vì nếu b² và c² chia 4 đều dư 1 => b²+c² = a² chia 4 dư 2 trái lí luận trên
=> hoặc b² hoặc c² (hoặc cả 2) chia 4 dư 0, chẳn hạn b² chia 4 dư 0
+ nếu c² chia 4 dư 0 => b và c đều chia hết cho 2 => abc chia hết cho 4
+ nếu c² chia 4 dư 1 => a² = b²+c² chia 4 dư 1 => a, c là 2 số lẻ
a = 2n+1 ; c = 2m+1; có: b² = a²-c² = (a-c)(a+c) = (2n-2m)(2n+2m+2)
=> b² = 4(n-m)(n+m+1) (**)
ta lại thấy nếu m, n cùng chẳn hoặc cùng lẻ => n-m chẳn
nếu m, n có 1 chẳn, 1 lẻ => m+n+1 chẳn
=> (m-n)(m+n+1) chia hết cho 2 => b² = 4(m-n)(m+n+1) chia hết cho 8
=> b chia hết cho 4 => abc chia hết cho 4
Tóm lại abc luôn chia hết cho 4 (2)
* lập luận tương tự thì thấy số n² chia cho 5 chỉ có thể dư 0, 1, 4
+ b² và c² chia 5 không thể cùng dư 1 hoặc 4
vì nếu cùng dư 1 => b²+c² = a² chia 5 dư 2
nếu cùng dư là 4 thì b²+c² = a² chia 5 dư 3
đều vô lí do a² chia 5 chỉ có thể dư 0, 1 hoặc 4
+ b² chia 5 dư 1 và c² chia 5 dư 4 (hoặc ngược lại)
=> b²+c² = a² chia 5 dư 0 => a chia hết cho 5 (do 5 nguyên tố)
+ nếu b² hoặc c² chia 5 dư 0 => b (hoặc c ) chia hết cho 5
Tóm lại vẫn có abc chia hết cho 5 (3)
Từ (1), (2), (3) => abc chia hết cho 3, 4, 5
=> abc chia hết cho [3,4,5] = 60