Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
A= 1+3+32+33+......+3119
3A= 3+32+33+....+3119+3120
3A-A=3120-1
A=3120-1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
a, Để \(\frac{8}{x+2}\) nhận giá trị là số tự nhiên \(\Rightarrow\)\(8⋮x+2\Rightarrow x+2\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;6\right\}\)
Vì \(x\in N\Rightarrow x\in\text{ }\left\{0;2;6\right\}\)
Vậy \(x\in\left\{0;2;6\right\}\)
b, Để \(\frac{x+3}{x+1}\) nhận giá trị là số tự nhiên\(\Rightarrow\left\{{}\begin{matrix}x+3⋮x+1\\x+1⋮x+1\end{matrix}\right.\Rightarrow x+3-x+1⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\in\text{Ư}\left(2\right)=\left\{1;2\right\}\)\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
- Bài 2:
b) S = 1 + 2 + 22 +.... + 211
= (1+23) + (2 + 24) +..... + (28+ 211)
= (1+23) + 2(1+23)+....+28(1+23)
= 9 + 2.9 + .... + 28.9
= 9.(1+2+...+28) ⋮ 9
Vậy S ⋮ 9
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)