Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số chia hết cho 5 có tận cùng là 0 hoặc 5 thì chia hết cho 5
nhưng ở đây họ chỉ cho số 5
Vậy c = 5
Nên ta đặt như thế này :
ab5
Còn số 1 và 9 , ta chỉ cần hoán đổi hai số thôi
195 và 915
Vậy có tất cả 2 số : 195 và 915 là những số có dạng abc chia hết cho 5
Mình đã trả lời một câu hỏi của cậu rồi , cậu tham khảo nhé !
Chúc bạn học tốt !
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
1.
\(\dfrac{19.20}{19+20}=\dfrac{380}{39}=9\dfrac{29}{39}\)
\(\dfrac{\overline{aaa}}{\overline{aa}}=\dfrac{111.a}{11.a}=\dfrac{111}{11}=10\dfrac{1}{11}\)
\(\dfrac{\overline{ababa}}{\overline{aba}}=\dfrac{100.\overline{aba}+\overline{ba}}{\overline{aba}}=\dfrac{100.\overline{aba}}{\overline{aba}}+\dfrac{\overline{ba}}{\overline{aba}}=100\dfrac{\overline{ba}}{\overline{aba}}\)
2.
\(6\dfrac{23}{41}=\dfrac{6.41+23}{41}=\dfrac{269}{41}\)
\(a\dfrac{a}{99}=\dfrac{a.99+a}{99}=\dfrac{100.a}{99}=\dfrac{\overline{a00}}{99}\)
\(1\dfrac{a-b}{a+b}=\dfrac{a+b+a-b}{a+b}=\dfrac{2.a}{a+b}\)
3.
\(\dfrac{69}{1000}=0,069\)
\(8\dfrac{77}{100}=8,77\)
\(\dfrac{34567}{10^4}=\dfrac{34567}{10000}=3,4567\)
\(\dfrac{\overline{abc}}{10^n}=\dfrac{\overline{abc}}{10...0}=\overline{0,0...0abc}\)
n số hạng 0 n - 3 số hạng 0 ở phần thập phân
abc = 100a + 10b + c = n2 - 1 (1)
cba = 100c + 10b + a = ( n - 2 )2 = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được:
abc - cba
= ( 100a + 10b + c ) - ( 100c + 10b + a ) = ( n2 - 1 ) - ( n2 - 4n + 4 )
= 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 4n - 4
= 100a - a + 10b -10b +c - 100c = n2 - n2 - 1 - 4 + 4n
= 99a - 99c = -5 + 4n
= 99. ( a - c ) = 4n - 5
=> 4n - 5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999
=> 100 \(\le\) n2 - 1 \(\le\) 999
=> 101 \(\le\) n2 \(\le\) 1000
=> 11 \(\le\) n \(\le\) 31
=> 39 \(\le\) 4n - 5 \(\le\) 119
=> Vì 4n - 5 \(⋮\) 99 nên :
4n - 5 = 99
4n = 99 + 5
4n = 104
n = 104 : 4
n = 26
=> abc = n2 - 1
abc = 262 - 1 ( thay n = 26 )
abc = 675
Vậy số cần tìm là 675.
vì là số chia hết cho 5 nên chữ số tận cùng phải là 0 hoặc 5
=> c = 5
Vậy ta có a, b = 1 hoặc 9
Với a= 1; b= 9 ta có số: 195
Với a= 9 ; b= 1, ta có số: 915
Vậy ta có hai số là 195 và 915
Vì \(\overline{abc}⋮5\) nên c phải là số 5.
=> Các số đó là : 195;915.